21,740 research outputs found

    Conditions, constraints and contracts: on the use of annotations for policy modeling.

    Get PDF
    Organisational policies express constraints on generation and processing of resources. However, application domains rely on transformation processes, which are in principle orthogonal to policy specifications and domain rules and policies may evolve in a non-synchronised way. In previous papers, we have proposed annotations as a flexible way to model aspects of some policy, and showed how they could be used to impose constraints on domain configurations, how to derive application conditions on transformations, and how to annotate complex patterns. We extend the approach by: allowing domain model elements to be annotated with collections of elements, which can be collectively applied to individual resources or collections thereof; proposing an original construction to solve the problem of annotations remaining orphan , when annotated resources are consumed; introducing a notion of contract, by which a policy imposes additional pre-conditions and post-conditions on rules for deriving new resources. We discuss a concrete case study of linguistic resources, annotated with information on the licenses under which they can be used. The annotation framework allows forms of reasoning such as identifying conflicts among licenses, enforcing the presence of licenses, or ruling out some modifications of a licence configuration

    Modelling of cryogenic cooling system design concepts for superconducting aircraft propulsion

    Get PDF
    Distributed propulsion concepts are promising in terms of improved fuel burn, better aerodynamic performance, and greater control. Superconducting networks are being considered for their superior power density and efficiency. This study discusses the design of cryogenic cooling systems which are essential for normal operation of superconducting materials. This research project has identified six key requirements such as maintain temperature and low weight, with two critical components that dramatically affect mass identified as the heat exchanger and compressors. Qualitatively, the most viable concept for cryocooling was found to be the reverse-Brayton cycle (RBC) for its superior reliability and flexibility. Single- and two-stage reverse-Brayton systems were modelled, highlighting that double stage concepts are preferable in specific mass and future development terms in all cases except when using liquid hydrogen as the heat sink. Finally, the component-level design space was considered with the most critical components affecting mass being identified as the reverse-Brayton compressor and turbine

    Deformation compatibility in a single crystalline Ni superalloy

    Get PDF
    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure

    Variation propagation of bench vises in multi-stage machining processes

    Get PDF
    Comunicación presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)Variation propagation has been successfully modeled by the Stream of Variation (SoV) approach in multistage machining processes. However, the SoV model basically supports 3-2-1 fixtures based on punctual locators and other workholding systems such as conventional vises are not considered yet. In this paper, the SoV model is expanded to include the fixture- and datum-induced variations on workholding devices such as bench vises. The model derivation is validated through assembly and machining simulations on Computer Aided Design software. The case study analyzed shows an average error of part quality prediction between the SoV model and the CAD simulations of 0.26%

    Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems

    Get PDF
    In this article, we formulate new models for coupled systems of bulk-surface reaction–diffusion equations on stationary volumes. The bulk reaction–diffusion equations are coupled to the surface reaction–diffusion equations through linear Robin-type boundary conditions. We then state and prove the necessary conditions for diffusion-driven instability for the coupled system. Owing to the nature of the coupling between bulk and surface dynamics, we are able to decouple the stability analysis of the bulk and surface dynamics. Under a suitable choice of model parameter values, the bulk reaction–diffusion system can induce patterning on the surface independent of whether the surface reaction–diffusion system produces or not, patterning. On the other hand, the surface reaction–diffusion system cannot generate patterns everywhere in the bulk in the absence of patterning from the bulk reaction–diffusion system. For this case, patterns can be induced only in regions close to the surface membrane. Various numerical experiments are presented to support our theoretical findings. Our most revealing numerical result is that, Robin-type boundary conditions seem to introduce a boundary layer coupling the bulk and surface dynamics

    Cyberscience and the Knowledge-Based Economy, Open Access and Trade Publishing: From Contradiction to Compatibility with Nonexclusive Copyright Licensing

    Get PDF
    Open source, open content and open access are set to fundamentally alter the conditions of knowledge production and distribution. Open source, open content and open access are also the most tangible result of the shift towards e-Science and digital networking. Yet, widespread misperceptions exist about the impact of this shift on knowledge distribution and scientific publishing. It is argued, on the one hand, that for the academy there principally is no digital dilemma surrounding copyright and there is no contradiction between open science and the knowledge-based economy if profits are made from nonexclusive rights. On the other hand, pressure for the ‘digital doubling’ of research articles in Open Access repositories (the ‘green road’) is misguided and the current model of Open Access publishing (the ‘gold road’) has not much future outside biomedicine. Commercial publishers must understand that business models based on the transfer of copyright have not much future either. Digital technology and its economics favour the severance of distribution from certification. What is required of universities and governments, scholars and publishers, is to clear the way for digital innovations in knowledge distribution and scholarly publishing by enabling the emergence of a competitive market that is based on nonexclusive rights. This requires no change in the law but merely an end to the praxis of copyright transfer and exclusive licensing. The best way forward for research organisations, universities and scientists is the adoption of standard copyright licenses that reserve some rights, namely Attribution and No Derivative Works, but otherwise will allow for the unlimited reproduction, dissemination and re-use of the research article, commercial uses included

    Investigation Interoperability Problems in Pharmacy Automation: A Case Study in Saudi Arabia

    Get PDF
    The aim of this case study is to investigate the nature of interoperability problems in hospital systems automation. One of the advanced healthcare providers in Saudi Arabia is the host of the study. The interaction between the pharmacy system and automated medication dispensing cabinets is the focus of the case system. The research method is a detailed case study where multiple data collection methods are used. The modelling of the processes of inpatient pharmacy systems is presented using Business Process Model Notation. The data collected is analysed to study the different interoperability problems. This paper presents a framework that classifies health informatics interoperability implementation problems into technical, semantic, organisational levels. The detailed study of the interoperability problems in this case illustrates the challenges to the adoption of health information system automation which could help other healthcare organisations in their system automation projects
    • …
    corecore