3,353 research outputs found

    Hydraulic falls under a floating ice plate due to submerged obstructions

    Get PDF

    On asymptotically equivalent shallow water wave equations

    Full text link
    The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire {\it family} of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduced by Kodama in combination with the application of the Helmholtz-operator. These Kodama-Helmholtz transformations are used to present connections between shallow water waves, the integrable 5th-order Korteweg-de Vries equation, and a generalization of the Camassa-Holm (CH) equation that contains an additional integrable case. The dispersion relation of the full water wave problem and any equation in this family agree to 5th order. The travelling wave solutions of the CH equation are shown to agree to 5th order with the exact solution

    Elliptic solutions and solitary waves of a higher order KdV--BBM long wave equation

    Get PDF
    We provide conditions for existence of hyperbolic, unbounded periodic and elliptic solutions in terms of Weierstrass \wp functions of both third and fifth-order KdV--BBM (Korteweg-de Vries--Benjamin, Bona \& Mahony) regularized long wave equation. An analysis for the initial value problem is developed together with a local and global well-posedness theory for the third-order KdV--BBM equation. Traveling wave reduction is used together with zero boundary conditions to yield solitons and periodic unbounded solutions, while for nonzero boundary conditions we find solutions in terms of Weierstrass elliptic \wp functions. For the fifth-order KdV--BBM equation we show that a parameter γ=112\gamma=\frac {1}{12}, for which the equation has a Hamiltonian, represents a restriction for which there are constraint curves that never intersect a region of unbounded solitary waves, which in turn shows that only dark or bright solitons and no unbounded solutions exist. Motivated by the lack of a Hamiltonian structure for γ112\gamma\neq\frac{1}{12} we develop HkH^k bounds, and we show for the non Hamiltonian system that dark and bright solitons coexist together with unbounded periodic solutions. For nonzero boundary conditions, due to the complexity of the nonlinear algebraic system of coefficients of the elliptic equation we construct Weierstrass solutions for a particular set of parameters only.Comment: 13 pages, 6 figure

    Stability of Compacton Solutions of Fifth-Order Nonlinear Dispersive Equations

    Full text link
    We consider fifth-order nonlinear dispersive K(m,n,p)K(m,n,p) type equations to study the effect of nonlinear dispersion. Using simple scaling arguments we show, how, instead of the conventional solitary waves like solitons, the interaction of the nonlinear dispersion with nonlinear convection generates compactons - the compact solitary waves free of exponential tails. This interaction also generates many other solitary wave structures like cuspons, peakons, tipons etc. which are otherwise unattainable with linear dispersion. Various self similar solutions of these higher order nonlinear dispersive equations are also obtained using similarity transformations. Further, it is shown that, like the third-order nonlinear K(m,n)K(m,n) equations, the fifth-order nonlinear dispersive equations also have the same four conserved quantities and further even any arbitrary odd order nonlinear dispersive K(m,n,p...)K(m,n,p...) type equations also have the same three (and most likely the four) conserved quantities. Finally, the stability of the compacton solutions for the fifth-order nonlinear dispersive equations are studied using linear stability analysis. From the results of the linear stability analysis it follows that, unlike solitons, all the allowed compacton solutions are stable, since the stability conditions are satisfied for arbitrary values of the nonlinear parameters.Comment: 20 pages, To Appear in J.Phys.A (2000), several modification

    Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics

    Get PDF
    For surface gravity waves propagating in shallow water, we propose a variant of the fully nonlinear Serre-Green-Naghdi equations involving a free parameter that can be chosen to improve the dispersion properties. The novelty here consists in the fact that the new model conserves the energy, contrary to other modified Serre's equations found in the literature. Numerical comparisons with the Euler equations show that the new model is substantially more accurate than the classical Serre equations, specially for long time simulations and for large amplitudes.Comment: 24 pages, 4 figures, 41 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Dissipative perturbations for the K(n,n) Rosenau-Hyman equation

    Full text link
    Compactons are compactly supported solitary waves for nondissipative evolution equations with nonlinear dispersion. In applications, these model equations are accompanied by dissipative terms which can be treated as small perturbations. We apply the method of adiabatic perturbations to compactons governed by the K(n,n) Rosenau-Hyman equation in the presence of dissipative terms preserving the "mass" of the compactons. The evolution equations for both the velocity and the amplitude of the compactons are determined for some linear and nonlinear dissipative terms: second-, fourth-, and sixth-order in the former case, and second- and fourth-order in the latter one. The numerical validation of the method is presented for a fourth-order, linear, dissipative perturbation which corresponds to a singular perturbation term

    Finite depth effects on solitary waves in a floating ice sheet

    Get PDF
    A theoretical and numerical study of two-dimensional nonlinear flexural-gravity waves propagating at the surface of an ideal fluid of finite depth, covered by a thin ice sheet, is presented. The ice-sheet model is based on the special Cosserat theory of hyperelastic shells satisfying Kirchhoff׳s hypothesis, which yields a conservative and nonlinear expression for the bending force. From a Hamiltonian reformulation of the governing equations, two weakly nonlinear wave models are derived: a 5th-order Korteweg–de Vries equation in the long-wave regime and a cubic nonlinear Schrödinger equation in the modulational regime. Solitary wave solutions of these models and their stability are analysed. In particular, there is a critical depth below which the nonlinear Schrödinger equation is of focusing type and thus admits stable soliton solutions. These weakly nonlinear results are validated by comparison with direct numerical simulations of the full governing equations. It is observed numerically that small- to large-amplitude solitary waves of depression are stable. Overturning waves of depression are also found for low wave speeds and sufficiently large depth. However, solitary waves of elevation seem to be unstable in all cases
    corecore