9,525 research outputs found

    A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module

    Full text link
    The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models in order to predict accurately their electrical output behavior. The main aim of this paper is to investigate the application of an advanced neural network based model of a module to improve the accuracy of the predicted output I--V and P--V curves and to keep in account the change of all the parameters at different operating conditions. Radial basis function neural networks (RBFNN) are here utilized to predict the output characteristic of a commercial PV module, by reading only the data of solar irradiation and temperature. A lot of available experimental data were used for the training of the RBFNN, and a backpropagation algorithm was employed. Simulation and experimental validation is reported

    Heat transfer simulation of evacuated tube collectors (ETC): An application to a prototype

    Get PDF
    Since fossil fuels shortages are predicted for the forthcoming generations, the use of renewable energy sources is playing a key role and is strongly recommended worldwide by national and international regulations. In this scenario, solar collectors for hot water preparation, space heating and cooling are becoming an increasingly interesting alternative, especially in the building sector because of population growth. Thus, the present paper is addressed to numerically investigate the thermal behaviour of a prototypal evacuated tube by solving the heat transfer differential equations using the Finite Element Method. This is to reproduce the heat transfer process occurring within the real system, helping the industry improve the prototype

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Phenomenological based model of hydrogen production using an alkaline self-pressurized electrolyzer

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The aim of this work is to develop the phenomenological based modeling of a self-pressurized alkaline electrolyser with the objective of predicting the cross-contamination of the gases produced. A proposed model, built in Matlab®, represents the dynamical evolution in real electrolysers, and anticipates operational variables: level, pressure and all concentrations. Dynamic responses in the concentrations of the electrolytic cell, and variations in both level and pressure at the chamber due to the change in current and diffusivity, are reported. The equations by which the variables can be computed are also presented. The proposed model is ready for the corresponding adjustment of parameters based on experimental measurements taken from an available prototype and through a suitable identification process.Peer ReviewedPostprint (author's final draft

    Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination

    Get PDF
    A theoretical and experimental analysis of PV module temperature under various environmental conditions is presented in relation to module inclination, wind velocity and direction. The present experimental study, makes use of hourly PV temperature data collected from a double-axis sun-tracking PV system and environmental parameters monitored for a period of one year. The f coefficient which relates the PV module temperature with the intensity of the global solar radiation on the PV plane and the ambient temperature, is assessed in relation to the angle of PV inclination, the wind velocity and the angle of incidence of the wind stream on the PV surface, either front or back. The f coefficient is evaluated both experimentally and theoretically through thermal modelling based on the energy balance equation. The simulation model developed in this study considers heat convection by natural and air forced flow, the flow pattern either laminar or turbulent, the relative geometry of the PV module with respect to the wind direction, and the radiated heat by the PV module. Various expressions for the forced heat convection coefficient available in the literature are tested within the thermal model with reference to the windward and leeward side of the PV module, and their applicability to PV thermal analysis is experimentally assessed in terms of the agreement shown with measured data. The values of the f coefficient provided by the simulation model lie very close to the experimental data for the entire range of PV inclination angles, wind velocities and wind directions tested

    Smart windows: Thermal modelling and evaluation

    Get PDF
    Copyright @ 2014 The Authors. Published by Elsevier Ltd. This is an open access article shared under the CC BY license (http://creativecommons.org/licenses/by/3.0/).A numerical investigation of the performance of a multi paned smart window integrated with water-cooled high efficiency third generation GaAsP/InGaAs QWSC (∼32% efficiency) solar cells illuminated by two-axis tracking solar concentrators at 500× in the inter pane space is presented. Optimising system parameters such as optical concentration ratio and coolant (water) flow rate is essential in order to avoid degradation in system performance due to high cell temperatures and thermal stresses. Detailed modelling of the thermo-fluid characteristics of the smart windows system was undertaken using a finite volume CFD package. Results of this analysis which considered the conductive, convective and radiative heat exchange processes taking place in the interior of the smart window system as well as the heat exchange to the internal and external ambient environment are presented.Engineering and Physical Sciences Research Counci

    Solcore: A multi-scale, python-based library for modelling solar cells and semiconductor materials

    Full text link
    Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.Comment: 25 pages, 18 figures, Journal of Computational Electronics (2018

    What is moving in hybrid halide perovskite solar cells?

    Full text link
    Organic-inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3_3NH3_3PbI3_3) and formamidinium lead iodide ([CH(NH2_2)2_2]PbI3_3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron-hole recombination rates, and current-voltage hysteresis. Multi-scale simulations - drawing from electronic structure, ab initio molecular dynamic and Monte Carlo techniques - have been combined with neutron scattering and ultra-fast vibrational spectroscopy to qualify the nature and timescales of the motions. Recent experimental evidence and theoretical models for simultaneous electron transport and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to metal oxide perovskites developed for battery and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behaviour found in hybrid perovskites introduces a sensitivity in materials characterisation to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials and device simulations. Herein, we critically discuss the atomistic origin of the dynamic processes.Comment: 29 pages, 3 figure

    Asymptotic solution of a model for bilayer organic diodes and solar cells

    Get PDF
    The current voltage characteristics of an organic semiconductor diode made by placing together two materials with dissimilar electron affinities and ionisation potentials is analysed using asymptotic methods. An intricate boundary layer structure is examined. We find that there are three regimes for the total current passing through the diode. For reverse bias and moderate forward bias the dependency of the voltage on the current is similar to the behaviour of conventional inorganic semiconductor diodes predicted by the Shockley equation and are governed by recombination at the interface of the materials. There is then a narrow range of currents where the behaviour undergoes a transition. Finally for large forward bias the behaviour is different with the current being linear in voltage and is primarily controlled by drift of charges in the organic layers. The size of the interfacial recombination rate is critical in determining the small range of current where there is rapid transition between the two main regimes. The extension of the theory to organic solar cells is discussed and the analogous current voltage curves derived in the regime of interest
    corecore