267 research outputs found

    3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors

    Get PDF
    We present a scanning light detection and ranging (LIDAR) system incorporating an individual Ge-on-Si single-photon avalanche diode (SPAD) detector for depth and intensity imaging in the short-wavelength infrared region. The time-correlated single-photon counting technique was used to determine the return photon time-of-flight for target depth information. In laboratory demonstrations, depth and intensity reconstructions were made of targets at short range, using advanced image processing algorithms tailored for the analysis of single–photon time-of-flight data. These laboratory measurements were used to predict the performance of the single-photon LIDAR system at longer ranges, providing estimations that sub-milliwatt average power levels would be required for kilometer range depth measurements

    A trillion frames per second: the techniques and applications of light-in-flight photography

    Get PDF
    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light-in-flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost.Comment: Published in Reports on progress in Physic

    Robotic leaf probing via segmentation of range data into surface patches

    Get PDF
    Presentado al International Conference on Intelligent Robots and Systems (IROS AGROBOTICS), Workshop on Agricultural Robotics: Enabling Safe, Efficient, Affordable Robots for Food Production celebrado en Portugal del 7 al 12 de octubre de 2012.We present a novel method for the robotized probing of plant leaves using Time-of-Flight (ToF) sensors. Plant images are segmented into surface patches by combining a segmentation of the infrared intensity image, provided by the ToF camera, with quadratic surface fitting using ToF depth data. Leaf models are fitted to the boundaries of the segments and used to determine probing points and to evaluate the suitability of leaves for being sampled. The robustness of the approach is evaluated by repeatedly placing an especially adapted, robot-mounted spad meter on the probing points which are extracted in an automatic manner. The number of successful chlorophyll measurements is counted, and the total time for processing the visual data and probing the plant with the robot is measured for each trial. In case of failure, the underlying causes are determined and reported, allowing a better assessment of the applicability of the method in real scenarios.This research is partially funded by the EU GARNICS project FP7-247947, by the Spanish Ministry of Science and Innovation under projects PAU+ and MIPRCV Consolider Ingenio CSD2007-00018, and the Catalan Research Commission. B. Dellen acknowledges support from the Spanish Ministry for Science and Innovation via a Ramon y Cajal program. S. Foix is supported by PhD fellowship from CSIC’s JAE program.Peer Reviewe

    FPGA-based real-time multichannel neural dataset generation

    Get PDF
    • …
    corecore