268 research outputs found

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Advanced Data Analytics Methodologies for Anomaly Detection in Multivariate Time Series Vehicle Operating Data

    Get PDF
    Early detection of faults in the vehicle operating systems is a research domain of high significance to sustain full control of the systems since anomalous behaviors usually result in performance loss for a long time before detecting them as critical failures. In other words, operating systems exhibit degradation when failure begins to occur. Indeed, multiple presences of the failures in the system performance are not only anomalous behavior signals but also show that taking maintenance actions to keep the system performance is vital. Maintaining the systems in the nominal performance for the lifetime with the lowest maintenance cost is extremely challenging and it is important to be aware of imminent failure before it arises and implement the best countermeasures to avoid extra losses. In this context, the timely anomaly detection of the performance of the operating system is worthy of investigation. Early detection of imminent anomalous behaviors of the operating system is difficult without appropriate modeling, prediction, and analysis of the time series records of the system. Data based technologies have prepared a great foundation to develop advanced methods for modeling and prediction of time series data streams. In this research, we propose novel methodologies to predict the patterns of multivariate time series operational data of the vehicle and recognize the second-wise unhealthy states. These approaches help with the early detection of abnormalities in the behavior of the vehicle based on multiple data channels whose second-wise records for different functional working groups in the operating systems of the vehicle. Furthermore, a real case study data set is used to validate the accuracy of the proposed prediction and anomaly detection methodologies

    Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression

    Get PDF
    Renewable energy from wind and solar resources can contribute significantly to the decarbonisation of the conventionally fossil-driven electricity grid. However, their seamless integration with the grid poses significant challenges due to their intermittent generation patterns, which is intensified by the existing uncertainties and fluctuations from the demand side. A resolution is increasing energy storage and standby power generation which results in economic losses. Alternatively, enhancing the predictability of wind and solar energy as well as demand enables replacing such expensive hardware with advanced control and optimization systems. The present research contribution establishes consistent sets of data and develops data-driven models through machine-learning techniques. The aim is to quantify the uncertainties in the electricity grid and examine the predictability of their behaviour. The predictive methods that were selected included conventional artificial neural networks (ANN), support vector regression (SVR) and Gaussian process regression (GPR). For each method, a sensitivity analysis was conducted with the aim of tuning its parameters as optimally as possible. The next step was to train and validate each method with various datasets (wind, solar, demand). Finally, a predictability analysis was performed in order to ascertain how the models would respond when the prediction time horizon increases. All models were found capable of predicting wind and solar power, but only the neural networks were successful for the electricity demand. Considering the dynamics of the electricity grid, it was observed that the prediction process for renewable wind and solar power generation, and electricity demand was fast and accurate enough to effectively replace the alternative electricity storage and standby capacity
    • …
    corecore