868 research outputs found

    Advanced Neural Network Based Control for Automotive Engines

    Get PDF
    This thesis investigates the application of artificial neural networks (NN) in air/fuel ratio (AFR) control of spark ignition(SI) engines. Three advanced neural network based control schemes are proposed: radial basis function(RBF) neural network based feedforward-feedback control scheme, RBF based model predictive control scheme, and diagonal recurrent neural network (DRNN) - based model predictive control scheme. The major objective of these control schemes is to maintain the air/fuel ratio at the stoichiometric value of 14.7 , under varying disturbance and system uncertainty. All the developed methods have been assessed using an engine simulation model built based on a widely used engine model benchmark, mean value engine model (MVEM). Satisfactory control performance in terms of effective regulation and robustness to disturbance and system component change have been achieved. In the feedforward-feedback control scheme, a neural network model is used to predict air mass flow from system measurements. Then, the injected fuel is estimated by an inverse NN controller. The simulation results have shown that much improved control performance has been achieved compared with conventional PID control in both transient and steady-state response. A nonlinear model predictive control is developed for AFR control in this re- . search using RBF model. A one-dimensional optimization method, the secant method is employed to obtain optimal control variable in the MPC scheme, so that the computation load and consequently the computation time is greatly reduced. This feature significantly enhances the applicability of the MPC to industrial systems with fast dynamics. Moreover, the RBF model is on-line adapted to model engine time-varying dynamics and parameter uncertainty. As such, the developed control scheme is more robust and this is approved in the evaluation. The MPC strategy is further developed with the RBF model replaced by a DRNN model. The DRNN has structure including a information-storing neurons and is therefore more appropriate for dynamics system modelling than the RBF, a static network. In this research, the dynamic back-propagation algorithm (DBP) is adopted to train the DRNN and is realized by automatic differentiation (AD) technique. This greatly reduces the computation load and time in the model training. The MPC using the DRNN model is found in the simulation evaluation having better control performance than the RBF -based model predictive control. The main contribution of this research lies in the following aspects. A neural network based feedforward-feedback control scheme is developed for AFR of SI engines, which is performed better than traditional look-up table with PI control method. This new method needs moderate computation and therefore has strong potential to be applied in production engines in automotive industry. Furthermore, two adaptive neural network models, a RBF model and a DRNN model, are developed for engine and incorporated into the MPC scheme. Such developed two MPC schemes are proved by simulations having advanced features of low computation load, better regulation performance in both transient and steady state, and stronger robustness to engine time-varying dynamics and parameter uncertainty. Finally, the developed schemes are considered to suit the limited hardware capacity of engine control and have feasibility and strong potential to be practically implemented in the production engines

    Nichtlineare Merkmalsselektion mit der generalisierten Transinformation

    Get PDF
    In the context of information theory, the term Mutual Information has first been formulated by Claude Elwood Shannon. Information theory is the consistent mathematical description of technical communication systems. To this day, it is the basis of numerous applications in modern communications engineering and yet became indispensable in this field. This work is concerned with the development of a concept for nonlinear feature selection from scalar, multivariate data on the basis of the mutual information. From the viewpoint of modelling, the successful construction of a realistic model depends highly on the quality of the employed data. In the ideal case, high quality data simply consists of the relevant features for deriving the model. In this context, it is important to possess a suitable method for measuring the degree of the, mostly nonlinear, dependencies between input- and output variables. By means of such a measure, the relevant features could be specifically selected. During the course of this work, it will become evident that the mutual information is a valuable and feasible measure for this task and hence the method of choice for practical applications. Basically and without the claim of being exhaustive, there are two possible constellations that recommend the application of feature selection. On the one hand, feature selection plays an important role, if the computability of a derived system model cannot be guaranteed, due to a multitude of available features. On the other hand, the existence of very few data points with a significant number of features also recommends the employment of feature selection. The latter constellation is closely related to the so called "Curse of Dimensionality". The actual statement behind this is the necessity to reduce the dimensionality to obtain an adequate coverage of the data space. In other word, it is important to reduce the dimensionality of the data, since the coverage of the data space exponentially decreases, for a constant number of data points, with the dimensionality of the available data. In the context of mapping between input- and output space, this goal is ideally reached by selecting only the relevant features from the available data set. The basic idea for this work has its origin in the rather practical field of automotive engineering. It was motivated by the goals of a complex research project in which the nonlinear, dynamic dependencies among a multitude of sensor signals should be identified. The final goal of such activities was to derive so called virtual sensors from identified dependencies among the installed automotive sensors. This enables the real-time computability of the required variable without the expenses of additional hardware. The prospect of doing without additional computing hardware is a strong motive force in particular in automotive engineering. In this context, the major problem was to find a feasible method to capture the linear- as well as the nonlinear dependencies. As mentioned before, the goal of this work is the development of a flexibly applicable system for nonlinear feature selection. The important point here is to guarantee the practicable computability of the developed method even for high dimensional data spaces, which are rather realistic in technical environments. The employed measure for the feature selection process is based on the sophisticated concept of mutual information. The property of the mutual information, regarding its high sensitivity and specificity to linear- and nonlinear statistical dependencies, makes it the method of choice for the development of a highly flexible, nonlinear feature selection framework. In addition to the mere selection of relevant features, the developed framework is also applicable for the nonlinear analysis of the temporal influences of the selected features. Hence, a subsequent dynamic modelling can be performed more efficiently, since the proposed feature selection algorithm additionally provides information about the temporal dependencies between input- and output variables. In contrast to feature extraction techniques, the developed feature selection algorithm in this work has another considerable advantage. In the case of cost intensive measurements, the variables with the highest information content can be selected in a prior feasibility study. Hence, the developed method can also be employed to avoid redundance in the acquired data and thus prevent for additional costs.Der Begriff der Transinformation wurde erstmals von Claude Elwood Shannon im Kontext der Informationstheorie, einer einheitlichen mathematischen Beschreibung technischer Kommunikationssysteme, geprĂ€gt. Die vorliegenden Arbeit befaßt sich vor diesem Hintergrund mit der Entwicklung einer in der Praxis anwendbaren Methodik zur nichtlinearen Merkmalselektion quantitativer, multivariater Daten auf der Basis des bereits erwĂ€hnten informationstheoretischen Ansatzes der Transinformation. Der Erfolg beim Übergang von realen Meßdaten zu einer geeigneten Modellbeschreibung wird maßgeblich von der QualitĂ€t der verwendeten Datenmengen bestimmt. Eine qualitativ hochwertige Datenmenge besteht im Idealfall ausschließlich aus den fĂŒr eine erfolgreiche Modellformulierung relevanten Daten. In diesem Kontext stellt sich daher sofort die Frage nach der Existenz eines geeigneten Maßes, um den Grad des, im Allgemeinen nichtlinearen, funktionalen Zusammenhangs zwischen Ein- und Ausgaben quantitativ korrekt erfassen zu können. Mit Hilfe einer solchen GrĂ¶ĂŸe können die relevanten Merkmale gezielt ausgewĂ€hlt und somit von den redundanten Merkmalen getrennt werden. Im Verlaufe dieser Arbeit wird deutlich werden, daß die eingangs erwĂ€hnte Transinformation ein hierfĂŒr geeignetes Maß darstellt und im praktischen Einsatz bestens bestehen kann. Die ursprĂŒngliche Motivation zur Erstellung der vorliegenden Arbeit hat ihren durchaus praktischen Hintergrund in der Automobiltechnik. Sie entstand im Rahmen eines komplexen Forschungsprojektes zur Ermittlung von nichtlinearen, dynamischen ZusammenhĂ€ngen zwischen einer Vielzahl von meßtechnisch ermittelten Sensorsignalen. Das Ziel dieser AktivitĂ€ten war, durch die Identifikation von nichtlinearen, dynamischen ZusammenhĂ€ngen zwischen den im Automobil verbauten Sensoren, sog. virtuelle Sensoren abzuleiten. Die konkrete Aufgabenstellung bestand nun darin, die Bestimmung einer zentralen MotorgrĂ¶ĂŸe so effizient zu gestalten, daß diese ohne zusĂ€tzliche Hardware unter harten Echtzeitvorgaben berechenbar ist. Auf den zusĂ€tzlichen Einsatz von Hardware verzichten zu können und mit der bereits vorhandenen Rechenleistung auszukommen, stellt aufgrund des resultierenden, enormen Kostenaufwandes insbesondere in der Automobiltechnik eine unglaublich starke Motivation dar. In diesem Zusammenhang trat immer wieder die große Problematik zutage, eine praktisch berechenbare Methode zu finden, die sowohl lineare- als auch nichtlineare ZusammenhĂ€nge zuverlĂ€ssig quantitativ erfassen kann. Im Verlauf der Arbeit werden nun unterschiedliche Selektionsstrategien mit der Transinformation kombiniert und deren Eigenschaften miteinander verglichen. In diesem Zusammenhang erweist sich die Kombination von Transinformation mit der sogenannten Forward Selection Strategie als besonders interessant. Es wird gezeigt, daß diese Kombination die praktische Berechenbarkeit fĂŒr hochdimensionale DatenrĂ€ume, im Vergleich zu anderen Vorgehensweisen, tatsĂ€chlich erst ermöglicht. Im Anschluß daran wird die Konvergenz dieses neuen Verfahrens zur Merkmalselektion bewiesen. Wir werden weiterhin sehen, daß die erzielten Ergebnisse bemerkenswert nahe an der optimalen Lösung liegen und im Vergleich mit einer alternativen Selektionsstrategie deutlich ĂŒberlegen sind. Parallel zur eigentlichen Selektion der relevanten Merkmale ist es mit der in dieser Arbeit entwickelten Methode nun auch problemlos möglich, eine nichtlineare Analyse der zeitlichen AbhĂ€ngigkeiten von ausgewĂ€hlten Merkmalen durchzufĂŒhren. Eine anschließende dynamische Modellierung kann somit wesentlich effizienter durchgefĂŒhrt werden, da die entwickelte Merkmalselektion zusĂ€tzliche Information hinsichtlich des dynamischen Zusammenhangs von Eingangs- und Ausgangsdaten liefert. Mit der in dieser Arbeit entwickelten Methode ist nun letztendlich gelungen was vorher nicht möglich war. Das quantitative Erfassen der nichtlinearen ZusammenhĂ€nge zwischen dedizierten Sensorsignalen, um diese in eine effiziente Merkmalselektion einfließen zu lassen. Im Gegensatz zur Merkmalsextraktion, hat die in diese Arbeit entwickelte Methode der nichtlinearen Merkmalselektion einen weiteren entscheidenden Vorteil. Insbesondere bei sehr kostenintensiven Messungen können diejenigen Variablen ausgewĂ€hlt werden, die hinsichtlich der Abbildung auf eine AusgangsgrĂ¶ĂŸe den höchsten Informationsgehalt tragen. Neben dem rein technischen Aspekt, die Selektionsentscheidung direkt auf den Informationsgehalt der verfĂŒgbaren Daten zu stĂŒtzen, kann die entwickelte Methode ebenfalls im Vorfeld kostenrelevanter Entscheidungen herangezogen werden, um Redundanz und die damit verbundenen höheren Kosten gezielt zu vermeiden

    The application of black box models to combustion processes in the internal combustion engine

    Get PDF
    The internal combustion engine has been under considerable pressure during the last few years. The publics growing sensitivity for emissions and resource wastage have led to increasingly stringent legislation. Engine manufacturers need to invest significant monetary funds and engineering resources in order to meet the designated regulations. In recent years, reductions in emissions and fuel consumption could be achieved with advanced engine technologies such as exhaust gas recirculation (EGR), variable geometry turbines (VGT), variable valve trains (VVT), variable compression ratios (VCR) or extended aftertreatment systems such as diesel particulate filters (DPF) or NOx traps or selective catalytic reduction (SCR) implementations. These approaches are characterised by a highly non-linear behaviour with an increasing demand for close-loop control. In consequence, successful controller design becomes an important part of meeting legislation requirements and acceptable standards. At the same time, the close-loop control requires additional monitoring information and, especially in the field of combustion control, this is a challenging task. Existing sensors in heavy-duty diesel applications for incylinder pressure detection enable the feedback of combustion conditions. However, high maintenance costs and reliability issues currently cancel this method out for mass-production vehicles. Methods of in-cylinder condition reconstruction for real-time applications have been presented over the last few decades. The methodical restrictions of these approaches are proving problematic. Hence, this work presents a method utilising artificial neural networks for the prediction of combustion-related engine parameters. The application of networks for the prediction of parameters such as emission formations of NOx and Particulate Matters will be shown initially. This thesis shows the importance of correct training and validation data choice together with a comprehensive network input set. In addition, an application of an efficient and accurate plant model as a support tool for an engine fuel-path controller is presented together with an efficient test data generation method. From these findings, an artificial neural network structure is developed for the prediction of in-cylinder combustion conditions. In-cylinder pressure and temperature provide valuable information about the combustion efficiency and quality. This work presents a structure that can predict these parameters from other more simple measurable variables within the engine auxiliaries. The structure is tested on data generated from a GT-Power simulation model and with a Caterpillar C6.6 heavy-duty diesel engine

    Studies on SI engine simulation and air/fuel ratio control systems design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards
    • 

    corecore