144,203 research outputs found

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems

    Performance requirements verification during software systems development

    Get PDF
    Requirements verification refers to the assurance that the implemented system reflects the specified requirements. Requirement verification is a process that continues through the life cycle of the software system. When the software crisis hit in 1960, a great deal of attention was placed on the verification of functional requirements, which were considered to be of crucial importance. Over the last decade, researchers have addressed the importance of integrating non-functional requirement in the verification process. An important non-functional requirement for software is performance. Performance requirement verification is known as Software Performance Evaluation. This thesis will look at performance evaluation of software systems. The performance evaluation of software systems is a hugely valuable task, especially in the early stages of a software project development. Many methods for integrating performance analysis into the software development process have been proposed. These methodologies work by utilising the software architectural models known in the software engineering field by transforming these into performance models, which can be analysed to gain the expected performance characteristics of the projected system. This thesis aims to bridge the knowledge gap between performance and software engineering domains by introducing semi-automated transformation methodologies. These are designed to be generic in order for them to be integrated into any software engineering development process. The goal of these methodologies is to provide performance related design guidance during the system development. This thesis introduces two model transformation methodologies. These are the improved state marking methodology and the UML-EQN methodology. It will also introduce the UML-JMT tool which was built to realise the UML-EQN methodology. With the help of automatic design models to performance model algorithms introduced in the UML-EQN methodology, a software engineer with basic knowledge of performance modelling paradigm can conduct a performance study on a software system design. This was proved in a qualitative study where the methodology and the tool deploying this methodology were tested by software engineers with varying levels of background, experience and from different sectors of the software development industry. The study results showed an acceptance for this methodology and the UML-JMT tool. As performance verification is a part of any software engineering methodology, we have to define frame works that would deploy performance requirements validation in the context of software engineering. Agile development paradigm was the result of changes in the overall environment of the IT and business worlds. These techniques are based on iterative development, where requirements, designs and developed programmes evolve continually. At present, the majority of literature discussing the role of requirements engineering in agile development processes seems to indicate that non-functional requirements verification is an unchartered territory. CPASA (Continuous Performance Assessment of Software Architecture) was designed to work in software projects where the performance can be affected by changes in the requirements and matches the main practices of agile modelling and development. The UML-JMT tool was designed to deploy the CPASA Performance evaluation tests

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context
    corecore