174 research outputs found

    Data mining based cyber-attack detection

    Get PDF

    Anomaly-based Correlation of IDS Alarms

    Get PDF
    An Intrusion Detection System (IDS) is one of the major techniques for securing information systems and keeping pace with current and potential threats and vulnerabilities in computing systems. It is an indisputable fact that the art of detecting intrusions is still far from perfect, and IDSs tend to generate a large number of false IDS alarms. Hence human has to inevitably validate those alarms before any action can be taken. As IT infrastructure become larger and more complicated, the number of alarms that need to be reviewed can escalate rapidly, making this task very difficult to manage. The need for an automated correlation and reduction system is therefore very much evident. In addition, alarm correlation is valuable in providing the operators with a more condensed view of potential security issues within the network infrastructure. The thesis embraces a comprehensive evaluation of the problem of false alarms and a proposal for an automated alarm correlation system. A critical analysis of existing alarm correlation systems is presented along with a description of the need for an enhanced correlation system. The study concludes that whilst a large number of works had been carried out in improving correlation techniques, none of them were perfect. They either required an extensive level of domain knowledge from the human experts to effectively run the system or were unable to provide high level information of the false alerts for future tuning. The overall objective of the research has therefore been to establish an alarm correlation framework and system which enables the administrator to effectively group alerts from the same attack instance and subsequently reduce the volume of false alarms without the need of domain knowledge. The achievement of this aim has comprised the proposal of an attribute-based approach, which is used as a foundation to systematically develop an unsupervised-based two-stage correlation technique. From this formation, a novel SOM K-Means Alarm Reduction Tool (SMART) architecture has been modelled as the framework from which time and attribute-based aggregation technique is offered. The thesis describes the design and features of the proposed architecture, focusing upon the key components forming the underlying architecture, the alert attributes and the way they are processed and applied to correlate alerts. The architecture is strengthened by the development of a statistical tool, which offers a mean to perform results or alert analysis and comparison. The main concepts of the novel architecture are validated through the implementation of a prototype system. A series of experiments were conducted to assess the effectiveness of SMART in reducing false alarms. This aimed to prove the viability of implementing the system in a practical environment and that the study has provided appropriate contribution to knowledge in this field

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Intrusion Detection from Heterogenous Sensors

    Get PDF
    RÉSUMÉ De nos jours, la protection des systĂšmes et rĂ©seaux informatiques contre diffĂ©rentes attaques avancĂ©es et distribuĂ©es constitue un dĂ©fi vital pour leurs propriĂ©taires. L’une des menaces critiques Ă  la sĂ©curitĂ© de ces infrastructures informatiques sont les attaques rĂ©alisĂ©es par des individus dont les intentions sont malveillantes, qu’ils soient situĂ©s Ă  l’intĂ©rieur et Ă  l’extĂ©rieur de l’environnement du systĂšme, afin d’abuser des services disponibles, ou de rĂ©vĂ©ler des informations confidentielles. Par consĂ©quent, la gestion et la surveillance des systĂšmes informatiques est un dĂ©fi considĂ©rable considĂ©rant que de nouvelles menaces et attaques sont dĂ©couvertes sur une base quotidienne. Les systĂšmes de dĂ©tection d’intrusion, Intrusion Detection Systems (IDS) en anglais, jouent un rĂŽle clĂ© dans la surveillance et le contrĂŽle des infrastructures de rĂ©seau informatique. Ces systĂšmes inspectent les Ă©vĂ©nements qui se produisent dans les systĂšmes et rĂ©seaux informatiques et en cas de dĂ©tection d’activitĂ© malveillante, ces derniers gĂ©nĂšrent des alertes afin de fournir les dĂ©tails des attaques survenues. Cependant, ces systĂšmes prĂ©sentent certaines limitations qui mĂ©ritent d’ĂȘtre adressĂ©es si nous souhaitons les rendre suffisamment fiables pour rĂ©pondre aux besoins rĂ©els. L’un des principaux dĂ©fis qui caractĂ©rise les IDS est le grand nombre d’alertes redondantes et non pertinentes ainsi que le taux de faux-positif gĂ©nĂ©rĂ©s, faisant de leur analyse une tĂąche difficile pour les administrateurs de sĂ©curitĂ© qui tentent de dĂ©terminer et d’identifier les alertes qui sont rĂ©ellement importantes. Une partie du problĂšme rĂ©side dans le fait que la plupart des IDS ne prennent pas compte les informations contextuelles (type de systĂšmes, applications, utilisateurs, rĂ©seaux, etc.) reliĂ©es Ă  l’attaque. Ainsi, une grande partie des alertes gĂ©nĂ©rĂ©es par les IDS sont non pertinentes en ce sens qu’elles ne permettent de comprendre l’attaque dans son contexte et ce, malgrĂ© le fait que le systĂšme ait rĂ©ussi Ă  correctement dĂ©tecter une intrusion. De plus, plusieurs IDS limitent leur dĂ©tection Ă  un seul type de capteur, ce qui les rend inefficaces pour dĂ©tecter de nouvelles attaques complexes. Or, ceci est particuliĂšrement important dans le cas des attaques ciblĂ©es qui tentent d’éviter la dĂ©tection par IDS conventionnels et par d’autres produits de sĂ©curitĂ©. Bien que de nombreux administrateurs systĂšme incorporent avec succĂšs des informations de contexte ainsi que diffĂ©rents types de capteurs et journaux dans leurs analyses, un problĂšme important avec cette approche reste le manque d’automatisation, tant au niveau du stockage que de l’analyse. Afin de rĂ©soudre ces problĂšmes d’applicabilitĂ©, divers types d’IDS ont Ă©tĂ© proposĂ©s dans les derniĂšres annĂ©es, dont les IDS de type composant pris sur Ă©tagĂšre, commercial off-the-shelf (COTS) en anglais, qui sont maintenant largement utilisĂ©s dans les centres d’opĂ©rations de sĂ©curitĂ©, Security Operations Center (SOC) en anglais, de plusieurs grandes organisations. D’un point de vue plus gĂ©nĂ©ral, les diffĂ©rentes approches proposĂ©es peuvent ĂȘtre classĂ©es en diffĂ©rentes catĂ©gories : les mĂ©thodes basĂ©es sur l’apprentissage machine, tel que les rĂ©seaux bayĂ©siens, les mĂ©thodes d’extraction de donnĂ©es, les arbres de dĂ©cision, les rĂ©seaux de neurones, etc., les mĂ©thodes impliquant la corrĂ©lation d’alertes et les approches fondĂ©es sur la fusion d’alertes, les systĂšmes de dĂ©tection d’intrusion sensibles au contexte, les IDS dit distribuĂ©s et les IDS qui reposent sur la notion d’ontologie de base. Étant donnĂ© que ces diffĂ©rentes approches se concentrent uniquement sur un ou quelques-uns des dĂ©fis courants reliĂ©s aux IDS, au meilleure de notre connaissance, le problĂšme dans son ensemble n’a pas Ă©tĂ© rĂ©solu. Par consĂ©quent, il n’existe aucune approche permettant de couvrir tous les dĂ©fis des IDS modernes prĂ©cĂ©demment mentionnĂ©s. Par exemple, les systĂšmes qui reposent sur des mĂ©thodes d’apprentissage machine classent les Ă©vĂ©nements sur la base de certaines caractĂ©ristiques en fonction du comportement observĂ© pour un type d’évĂ©nements, mais ils ne prennent pas en compte les informations reliĂ©es au contexte et les relations pouvant exister entre plusieurs Ă©vĂ©nements. La plupart des techniques de corrĂ©lation d’alerte proposĂ©es ne considĂšrent que la corrĂ©lation entre plusieurs capteurs du mĂȘme type ayant un Ă©vĂ©nement commun et une sĂ©mantique d’alerte similaire (corrĂ©lation homogĂšne), laissant aux administrateurs de sĂ©curitĂ© la tĂąche d’effectuer la corrĂ©lation entre les diffĂ©rents types de capteurs hĂ©tĂ©rogĂšnes. Pour leur part, les approches sensibles au contexte n’emploient que des aspects limitĂ©s du contexte sous-jacent. Une autre limitation majeure des diffĂ©rentes approches proposĂ©es est l’absence d’évaluation prĂ©cise basĂ©e sur des ensembles de donnĂ©es qui contiennent des scĂ©narios d’attaque complexes et modernes. À cet effet, l’objectif de cette thĂšse est de concevoir un systĂšme de corrĂ©lation d’évĂ©nements qui peut prendre en considĂ©ration plusieurs types hĂ©tĂ©rogĂšnes de capteurs ainsi que les journaux de plusieurs applications (par exemple, IDS/IPS, pare-feu, base de donnĂ©es, systĂšme d’exploitation, antivirus, proxy web, routeurs, etc.). Cette mĂ©thode permettra de dĂ©tecter des attaques complexes qui laissent des traces dans les diffĂ©rents systĂšmes, et d’incorporer les informations de contexte dans l’analyse afin de rĂ©duire les faux-positifs. Nos contributions peuvent ĂȘtre divisĂ©es en quatre parties principales : 1) Nous proposons la Pasargadae, une solution complĂšte sensible au contexte et reposant sur une ontologie de corrĂ©lation des Ă©vĂ©nements, laquelle effectue automatiquement la corrĂ©lation des Ă©vĂ©nements par l’analyse des informations recueillies auprĂšs de diverses sources. Pasargadae utilise le concept d’ontologie pour reprĂ©senter et stocker des informations sur les Ă©vĂ©nements, le contexte et les vulnĂ©rabilitĂ©s, les scĂ©narios d’attaques, et utilise des rĂšgles d’ontologie de logique simple Ă©crites en Semantic Query-Enhance Web Rule Language (SQWRL) afin de corrĂ©ler diverse informations et de filtrer les alertes non pertinentes, en double, et les faux-positifs. 2) Nous proposons une approche basĂ©e sur, mĂ©ta-Ă©vĂ©nement , tri topologique et l‘approche corrĂ©lation dâ€˜Ă©vĂ©nement basĂ©e sur sĂ©mantique qui emploie Pasargadae pour effectuer la corrĂ©lation d’évĂ©nements Ă  travers les Ă©vĂ©nements collectĂ©s de plusieurs capteurs rĂ©partis dans un rĂ©seau informatique. 3) Nous proposons une approche alerte de fusion basĂ©e sur sĂ©mantique, contexte sensible, qui s‘appuie sur certains des sous-composantes de Pasargadae pour effectuer une alerte fusion hĂ©tĂ©rogĂšne recueillies auprĂšs IDS hĂ©tĂ©rogĂšnes. 4) Dans le but de montrer le niveau de flexibilitĂ© de Pasargadae, nous l’utilisons pour mettre en oeuvre d’autres approches proposĂ©es d‘alertes et de corrĂ©lation dâ€˜Ă©vĂ©nements. La somme de ces contributions reprĂ©sente une amĂ©lioration significative de l’applicabilitĂ© et la fiabilitĂ© des IDS dans des situations du monde rĂ©el. Afin de tester la performance et la flexibilitĂ© de l’approche de corrĂ©lation d’évĂ©nements proposĂ©s, nous devons aborder le manque d’infrastructures expĂ©rimental adĂ©quat pour la sĂ©curitĂ© du rĂ©seau. Une Ă©tude de littĂ©rature montre que les approches expĂ©rimentales actuelles ne sont pas adaptĂ©es pour gĂ©nĂ©rer des donnĂ©es de rĂ©seau de grande fidĂ©litĂ©. Par consĂ©quent, afin d’accomplir une Ă©valuation complĂšte, d’abord, nous menons nos expĂ©riences sur deux scĂ©narios d’étude d‘analyse de cas distincts, inspirĂ©s des ensembles de donnĂ©es d’évaluation DARPA 2000 et UNB ISCX IDS. Ensuite, comme une Ă©tude dĂ©posĂ©e complĂšte, nous employons Pasargadae dans un vrai rĂ©seau informatique pour une pĂ©riode de deux semaines pour inspecter ses capacitĂ©s de dĂ©tection sur un vrai terrain trafic de rĂ©seau. Les rĂ©sultats obtenus montrent que, par rapport Ă  d’autres amĂ©liorations IDS existants, les contributions proposĂ©es amĂ©liorent considĂ©rablement les performances IDS (taux de dĂ©tection) tout en rĂ©duisant les faux positifs, non pertinents et alertes en double.----------ABSTRACT Nowadays, protecting computer systems and networks against various distributed and multi-steps attack has been a vital challenge for their owners. One of the essential threats to the security of such computer infrastructures is attacks by malicious individuals from inside and outside of the system environment to abuse available services, or reveal their confidential information. Consequently, managing and supervising computer systems is a considerable challenge, as new threats and attacks are discovered on a daily basis. Intrusion Detection Systems (IDSs) play a key role in the surveillance and monitoring of computer network infrastructures. These systems inspect events occurred in computer systems and networks and in case of any malicious behavior they generate appropriate alerts describing the attacks’ details. However, there are a number of shortcomings that need to be addressed to make them reliable enough in the real-world situations. One of the fundamental challenges in real-world IDS is the large number of redundant, non-relevant, and false positive alerts that they generate, making it a difficult task for security administrators to determine and identify real and important alerts. Part of the problem is that most of the IDS do not take into account contextual information (type of systems, applications, users, networks, etc.), and therefore a large portion of the alerts are non-relevant in that even though they correctly recognize an intrusion, the intrusion fails to reach its objectives. Additionally, to detect newer and complicated attacks, relying on only one detection sensor type is not adequate, and as a result many of the current IDS are unable to detect them. This is especially important with respect to targeted attacks that try to avoid detection by conventional IDS and by other security products. While many system administrators are known to successfully incorporate context information and many different types of sensors and logs into their analysis, an important problem with this approach is the lack of automation in both storage and analysis. In order to address these problems in IDS applicability, various IDS types have been proposed in the recent years and commercial off-the-shelf (COTS) IDS products have found their way into Security Operations Centers (SOC) of many large organizations. From a general perspective, these works can be categorized into: machine learning based approaches including Bayesian networks, data mining methods, decision trees, neural networks, etc., alert correlation and alert fusion based approaches, context-aware intrusion detection systems, distributed intrusion detection systems, and ontology based intrusion detection systems. To the best of our knowledge, since these works only focus on one or few of the IDS challenges, the problem as a whole has not been resolved. Hence, there is no comprehensive work addressing all the mentioned challenges of modern intrusion detection systems. For example, works that utilize machine learning approaches only classify events based on some features depending on behavior observed with one type of events, and they do not take into account contextual information and event interrelationships. Most of the proposed alert correlation techniques consider correlation only across multiple sensors of the same type having a common event and alert semantics (homogeneous correlation), leaving it to security administrators to perform correlation across heterogeneous types of sensors. Context-aware approaches only employ limited aspects of the underlying context. The lack of accurate evaluation based on the data sets that encompass modern complex attack scenarios is another major shortcoming of most of the proposed approaches. The goal of this thesis is to design an event correlation system that can correlate across several heterogeneous types of sensors and logs (e.g. IDS/IPS, firewall, database, operating system, anti-virus, web proxy, routers, etc.) in order to hope to detect complex attacks that leave traces in various systems, and incorporate context information into the analysis, in order to reduce false positives. To this end, our contributions can be split into 4 main parts: 1) we propose the Pasargadae comprehensive context-aware and ontology-based event correlation framework that automatically performs event correlation by reasoning on the information collected from various information resources. Pasargadae uses ontologies to represent and store information on events, context and vulnerability information, and attack scenarios, and uses simple ontology logic rules written in Semantic Query-Enhance Web Rule Language (SQWRL) to correlate various information and filter out non-relevant alerts and duplicate alerts, and false positives. 2) We propose a meta-event based, topological sort based and semantic-based event correlation approach that employs Pasargadae to perform event correlation across events collected form several sensors distributed in a computer network. 3) We propose a semantic-based context-aware alert fusion approach that relies on some of the subcomponents of Pasargadae to perform heterogeneous alert fusion collected from heterogeneous IDS. 4) In order to show the level of flexibility of Pasargadae, we use it to implement some other proposed alert and event correlation approaches. The sum of these contributions represent a significant improvement in the applicability and reliability of IDS in real-world situations. In order to test the performance and flexibility of the proposed event correlation approach, we need to address the lack of experimental infrastructure suitable for network security. A study of the literature shows that current experimental approaches are not appropriate to generate high fidelity network data. Consequently, in order to accomplish a comprehensive evaluation, first, we conduct our experiments on two separate analysis case study scenarios, inspired from the DARPA 2000 and UNB ISCX IDS evaluation data sets. Next, as a complete field study, we employ Pasargadae in a real computer network for a two weeks period to inspect its detection capabilities on a ground truth network traffic. The results obtained show that compared to other existing IDS improvements, the proposed contributions significantly improve IDS performance (detection rate) while reducing false positives, non-relevant and duplicate alerts

    CorrĂ©lation d’alertes : un outil plus efficace d’aide Ă  la dĂ©cision pour rĂ©pondre aux intrusions

    Get PDF
    Security Information and Event Management (SIEM) systems provide the security analysts with a huge amount of alerts. Managing and analyzing such tremendous number of alerts is a challenging task for the security administrator. Alert correlation has been designed in order to alleviate this problem. Current alert correlation techniques provide the security administrator with a better description of the detected attack and a more concise view of the generated alerts. That way, it usually reduces the volume of alerts in order to support the administrator in tackling the amount of generated alerts. Unfortunately, none of these techniques consider neither the knowledge about the attacker’s behavior nor the enforcement functionalities and the defense perimeter of the protected network (Firewalls, Proxies, Intrusion Detection Systems, etc). It is still challenging to first improve the knowledge about the attacker and second to identify the policy enforcement mechanisms that are capable to process generated alerts. Several authors have proposed different alert correlation methods and techniques. Although these approaches support the administrator in processing the huge number of generated alerts, they remain limited since these solutions do not provide us with more information about the attackers’ behavior and the defender’s capability in reacting to detected attacks. In this dissertation, we propose two novel alert correlation approaches. The first approach, which we call honeypot-based alert correlation, is based on the use of knowledge about attackers collected through honeypots. The second approach, which we call enforcement-based alert correlation, is based on a policy enforcement and defender capabilities’ modelLes SIEMs (systĂšmes pour la SĂ©curitĂ© de l’Information et la Gestion des ÉvĂ©nements) sont les cƓurs des centres opĂ©rationnels de la sĂ©curitĂ©. Ils corrĂšlent un nombre important d’évĂ©nements en provenance de diffĂ©rents capteurs (anti-virus, pare-feux, systĂšmes de dĂ©tection d’intrusion, etc), et offrent des vues synthĂ©tiques pour la gestion des menaces ainsi que des rapports de sĂ©curitĂ©. La gestion et l’analyse de ce grand nombre d’alertes est une tĂąche difficile pour l’administrateur de sĂ©curitĂ©. La corrĂ©lation d’alertes a Ă©tĂ© conçue afin de remĂ©dier Ă  ce problĂšme. Des solutions de corrĂ©lation ont Ă©tĂ© dĂ©veloppĂ©es pour obtenir une vue plus concise des alertes gĂ©nĂ©rĂ©es et une meilleure description de l’attaque dĂ©tectĂ©e. Elles permettent de rĂ©duire considĂ©rablement le volume des alertes remontĂ©es afin de soutenir l’administrateur dans le traitement de ce grand nombre d’alertes. Malheureusement, ces techniques ne prennent pas en compte les connaissances sur le comportement de l’attaquant, les fonctionnalitĂ©s de l’application et le pĂ©rimĂštre de dĂ©fense du rĂ©seau supervisĂ© (pare-feu, serveurs mandataires, SystĂšmes de dĂ©tection d’intrusions, etc). Dans cette thĂšse, nous proposons deux nouvelles approches de corrĂ©lation d’alertes. La premiĂšre approche que nous appelons corrĂ©lation d’alertes basĂ©e sur les pots de miel utilise des connaissances sur les attaquants recueillies par le biais des pots de miel. La deuxiĂšme approche de corrĂ©lation est basĂ©e sur une modĂ©lisation des points d’application de politique de sĂ©curit

    Performance Metrics for Network Intrusion Systems

    Get PDF
    Intrusion systems have been the subject of considerable research during the past 33 years, since the original work of Anderson. Much has been published attempting to improve their performance using advanced data processing techniques including neural nets, statistical pattern recognition and genetic algorithms. Whilst some significant improvements have been achieved they are often the result of assumptions that are difficult to justify and comparing performance between different research groups is difficult. The thesis develops a new approach to defining performance focussed on comparing intrusion systems and technologies. A new taxonomy is proposed in which the type of output and the data scale over which an intrusion system operates is used for classification. The inconsistencies and inadequacies of existing definitions of detection are examined and five new intrusion levels are proposed from analogy with other detection-based technologies. These levels are known as detection, recognition, identification, confirmation and prosecution, each representing an increase in the information output from, and functionality of, the intrusion system. These levels are contrasted over four physical data scales, from application/host through to enterprise networks, introducing and developing the concept of a footprint as a pictorial representation of the scope of an intrusion system. An intrusion is now defined as “an activity that leads to the violation of the security policy of a computer system”. Five different intrusion technologies are illustrated using the footprint with current challenges also shown to stimulate further research. Integrity in the presence of mixed trust data streams at the highest intrusion level is identified as particularly challenging. Two metrics new to intrusion systems are defined to quantify performance and further aid comparison. Sensitivity is introduced to define basic detectability of an attack in terms of a single parameter, rather than the usual four currently in use. Selectivity is used to describe the ability of an intrusion system to discriminate between attack types. These metrics are quantified experimentally for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of the 58 attack types present were detected with sensitivities in excess of 12dB indicating that detection performance of the attack types present in this dataset remains a challenge. The measured selectivity was also poor indicting that only three of the attack types could be confidently distinguished. The highest value of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for the evaluated system. Options for improving selectivity and sensitivity through additional measurements are examined.Stochastic Systems Lt

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Incident Prioritisation for Intrusion Response Systems

    Get PDF
    The landscape of security threats continues to evolve, with attacks becoming more serious and the number of vulnerabilities rising. To manage these threats, many security studies have been undertaken in recent years, mainly focusing on improving detection, prevention and response efficiency. Although there are security tools such as antivirus software and firewalls available to counter them, Intrusion Detection Systems and similar tools such as Intrusion Prevention Systems are still one of the most popular approaches. There are hundreds of published works related to intrusion detection that aim to increase the efficiency and reliability of detection, prevention and response systems. Whilst intrusion detection system technologies have advanced, there are still areas available to explore, particularly with respect to the process of selecting appropriate responses. Supporting a variety of response options, such as proactive, reactive and passive responses, enables security analysts to select the most appropriate response in different contexts. In view of that, a methodical approach that identifies important incidents as opposed to trivial ones is first needed. However, with thousands of incidents identified every day, relying upon manual processes to identify their importance and urgency is complicated, difficult, error-prone and time-consuming, and so prioritising them automatically would help security analysts to focus only on the most critical ones. The existing approaches to incident prioritisation provide various ways to prioritise incidents, but less attention has been given to adopting them into an automated response system. Although some studies have realised the advantages of prioritisation, they released no further studies showing they had continued to investigate the effectiveness of the process. This study concerns enhancing the incident prioritisation scheme to identify critical incidents based upon their criticality and urgency, in order to facilitate an autonomous mode for the response selection process in Intrusion Response Systems. To achieve this aim, this study proposed a novel framework which combines models and strategies identified from the comprehensive literature review. A model to estimate the level of risks of incidents is established, named the Risk Index Model (RIM). With different levels of risk, the Response Strategy Model (RSM) dynamically maps incidents into different types of response, with serious incidents being mapped to active responses in order to minimise their impact, while incidents with less impact have passive responses. The combination of these models provides a seamless way to map incidents automatically; however, it needs to be evaluated in terms of its effectiveness and performances. To demonstrate the results, an evaluation study with four stages was undertaken; these stages were a feasibility study of the RIM, comparison studies with industrial standards such as Common Vulnerabilities Scoring System (CVSS) and Snort, an examination of the effect of different strategies in the rating and ranking process, and a test of the effectiveness and performance of the Response Strategy Model (RSM). With promising results being gathered, a proof-of-concept study was conducted to demonstrate the framework using a live traffic network simulation with online assessment mode via the Security Incident Prioritisation Module (SIPM); this study was used to investigate its effectiveness and practicality. Through the results gathered, this study has demonstrated that the prioritisation process can feasibly be used to facilitate the response selection process in Intrusion Response Systems. The main contribution of this study is to have proposed, designed, evaluated and simulated a framework to support the incident prioritisation process for Intrusion Response Systems.Ministry of Higher Education in Malaysia and University of Malay

    Modélisation formelle des systÚmes de détection d'intrusions

    Get PDF
    L’écosystĂšme de la cybersĂ©curitĂ© Ă©volue en permanence en termes du nombre, de la diversitĂ©, et de la complexitĂ© des attaques. De ce fait, les outils de dĂ©tection deviennent inefficaces face Ă  certaines attaques. On distingue gĂ©nĂ©ralement trois types de systĂšmes de dĂ©tection d’intrusions : dĂ©tection par anomalies, dĂ©tection par signatures et dĂ©tection hybride. La dĂ©tection par anomalies est fondĂ©e sur la caractĂ©risation du comportement habituel du systĂšme, typiquement de maniĂšre statistique. Elle permet de dĂ©tecter des attaques connues ou inconnues, mais gĂ©nĂšre aussi un trĂšs grand nombre de faux positifs. La dĂ©tection par signatures permet de dĂ©tecter des attaques connues en dĂ©finissant des rĂšgles qui dĂ©crivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La dĂ©tection hybride repose sur plusieurs mĂ©thodes de dĂ©tection incluant celles sus-citĂ©es. Elle prĂ©sente l’avantage d’ĂȘtre plus prĂ©cise pendant la dĂ©tection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de rĂšgles de reconnaissance d’attaques. Le nombre d’attaques potentielles Ă©tant trĂšs grand, ces bases de rĂšgles deviennent rapidement difficiles Ă  gĂ©rer et Ă  maintenir. De plus, l’expression de rĂšgles avec Ă©tat dit stateful est particuliĂšrement ardue pour reconnaĂźtre une sĂ©quence d’évĂ©nements. Dans cette thĂšse, nous proposons une approche stateful basĂ©e sur les diagrammes d’état-transition algĂ©briques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de reprĂ©senter de façon graphique et modulaire une spĂ©cification, ce qui facilite la maintenance et la comprĂ©hension des rĂšgles. Nous Ă©tendons la notation ASTD avec de nouvelles fonctionnalitĂ©s pour reprĂ©senter des attaques complexes. Ensuite, nous spĂ©cifions plusieurs attaques avec la notation Ă©tendue et exĂ©cutons les spĂ©cifications obtenues sur des flots d’évĂ©nements Ă  l’aide d’un interprĂ©teur pour identifier des attaques. Nous Ă©valuons aussi les performances de l’interprĂ©teur avec des outils industriels tels que Snort et Zeek. Puis, nous rĂ©alisons un compilateur afin de gĂ©nĂ©rer du code exĂ©cutable Ă  partir d’une spĂ©cification ASTD, capable d’identifier de façon efficiente les sĂ©quences d’évĂ©nements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well
    • 

    corecore