4,475 research outputs found

    MODIS information, data and control system (MIDACS) operations concepts

    Get PDF
    The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios

    Applications of ISES for vegetation and land use

    Get PDF
    Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management

    PV monitoring system for a water pumping scheme with lithium-ion battery using free open-source software and IoT technologies.

    Full text link
    [EN] The development of photovoltaic (PV) technology is now a reality. The inclusion of lithium-ion batteries in grid-connected PV systems is growing, and the sharp drop in prices for these batteries will enable their use in applications such as PV water pumping schemes (PVWPS). A technical solution for the monitoring and tracking of PV systems is shown in this work, and a novel quasi-real-time monitoring system for a PVWPS with a Li-ion battery is proposed in which open-source Internet of Things (IoT) tools are used. The purpose of the monitoring system is to provide a useful tool for the operation, management, and development of these facilities. The experimental facility used to test the monitoring system includes a 2.4 kWpk photovoltaic field, a 3.6 kVA hybrid inverter, a 3.3 kWh/3 kW lithium-ion battery, a 2.2 kVA variable speed driver, and a 1.5 kW submersible pump. To address this study, data acquisition is performed using commercial hardware solutions that communicate using a Modbus-RTU protocol over an RS485 bus and open software. A Raspberry Pi is used in the data gateway stage, including a PM2 free open-source process manager to increase the robustness and reliability of the monitoring system. Data storage is performed in a server using InfluxDB for open-source database storage and Grafana as open-source data visualization software. Data processing is complemented with a configurable data exporter program that enables users to select and copy the data stored in InfluxDB. Excel or .csv files can be created that include the desired variables with a defined time interval and with the desired data granularity. Finally, the initial results of the monitoring system are presented, and the possible uses of the acquired data and potential users of the system are identified and described.This research was funded by Universitat Politècnica de València (UPV; Program ADSIDEO-cooperation 2017, project titled ¿Characterization of sustainable systems for the pumping of water for human consumption in developing regions and/or refugee camps in Kenya through the implementation of isolated photovoltaic systems with new generation lithium-ion batteries¿).Gimeno Sales, FJ.; Orts-Grau, S.; Escriba-Aparisi, A.; González Altozano, P.; Balbastre Peralta, I.; Martínez-Márquez, CI.; Gasque Albalate, M.... (2020). PV monitoring system for a water pumping scheme with lithium-ion battery using free open-source software and IoT technologies. Sustainability. 12(24):1-28. https://doi.org/10.3390/su122410651S128122

    Analysis and Optimization of Earth Observation Micro-Constellations

    Get PDF
    "Remote sensing techniques provide the capacity of collecting information of spots from afar. This tool has an important application on Earth’s monitoring from space, a practice which help to gather multiple data from any point on Earth’s surface in short periods of time: vegetation biomass, water quality, surface profile, surface temperature, human infrastructures spread... This knowledge is used for a diversity of purposes of human interest, such as military, agricultural, meteorological or ecological ends. In order to acquire this information by remote sensing practice an entire infrastructure has been set, divided into space and ground segments. The space segment comprises the satellite or satellites, also called Earth Observation Satellites (EOS), which are equipped with sensors for the reception of data, usually in the form of electromagnetic signals. These satellites establish transmissions with the ground segment by means of antennas placed in certain spots, in order to sent the information collected. Then the ground segment is responsible for the processing of the data acquired for its use on a particular application. Earth observation satellites have been used for decades now. Historically, large satellites were required in order to do the observation tasks. These satellites were manually coordinated and their time resolution, linked with the time needed to revisit and acquire data from the exact location, was very low. Currently, the miniaturization tendencies have also arrived to the space sector and smaller satellites are now developmed. The emergence of the CubeSats, included in the nanosatellites group, and the growth of the number of their launches make clear the future trend: Earth observation with small and numerous satellites" (Fragmento extraido de la Introducción del trabajo)Universidad de Sevilla. Grado en Ingeniería Aeroespacia

    2011 Strategic roadmap for Australian research infrastructure

    Get PDF
    The 2011 Roadmap articulates the priority research infrastructure areas of a national scale (capability areas) to further develop Australia’s research capacity and improve innovation and research outcomes over the next five to ten years. The capability areas have been identified through considered analysis of input provided by stakeholders, in conjunction with specialist advice from Expert Working Groups   It is intended the Strategic Framework will provide a high-level policy framework, which will include principles to guide the development of policy advice and the design of programs related to the funding of research infrastructure by the Australian Government. Roadmapping has been identified in the Strategic Framework Discussion Paper as the most appropriate prioritisation mechanism for national, collaborative research infrastructure. The strategic identification of Capability areas through a consultative roadmapping process was also validated in the report of the 2010 NCRIS Evaluation. The 2011 Roadmap is primarily concerned with medium to large-scale research infrastructure. However, any landmark infrastructure (typically involving an investment in excess of $100 million over five years from the Australian Government) requirements identified in this process will be noted. NRIC has also developed a ‘Process to identify and prioritise Australian Government landmark research infrastructure investments’ which is currently under consideration by the government as part of broader deliberations relating to research infrastructure. NRIC will have strategic oversight of the development of the 2011 Roadmap as part of its overall policy view of research infrastructure

    Techno-economic assessment of CO2 quality effect on its storage and transport: CO2QUEST: An overview of aims, objectives and main findings

    Get PDF
    This paper provides an overview of the aims, objectives and the main findings of the CO2QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Basics of Geomatics

    Full text link

    Effects of essential oils on Escherichia coli inactivation in cheese as described by meta-regression modelling

    Get PDF
    The growing intention to replace chemical food preservatives with plant-based antimicrobials that pose lower risks to human health has produced numerous studies describing the bactericidal properties of biopreservatives such as essential oils (EOs) in a variety of products, including cheese. This study aimed to perform a meta-analysis of literature data that could summarize the inactivation of Escherichia coli in cheese achieved by added EOs; and compare its inhibitory effectiveness by application method, antimicrobial concentration, and specific antimicrobials. After a systematic review, 362 observations on log reduction data and study characteristics were extracted from 16 studies. The meta-regression model suggested that pathogenic E. coli is more resistant to EO action than the non-pathogenic type (p < 0.0001), although in both cases the higher the EO dose, the greater the mean log reduction achieved (p < 0.0001). It also showed that, among the factual application methods, EOs’ incorporation in films render a steadier inactivation (p < 0.0001) than when directly applied to milk or smeared on cheese surface. Lemon balm, sage, shallot, and anise EOs showed the best inhibitory outcomes against the pathogen. The model also revealed the inadequacy of inoculating antimicrobials in cheese purposely grated for performing challenge studies, as this non-realistic application overestimates (p < 0.0001) the inhibitory effects of EOs.The authors are grateful to EU PRIMA programme and the Portuguese Foundation for Science and Technology (FCT) for funding the ArtiSaneFood project (PRIMA/0001/2018). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table
    • …
    corecore