8,311 research outputs found

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    Planning framework and methods to assess possible future high renewable penetrations in emerging economy electricity industries and security, affordability, and environmental implications for Indonesia’s Java-Bali grid

    Full text link
    Electricity industries worldwide are transitioning away from fossil-fuels towards wind and solar generation. While these technologies are now often cost-competitive as well as environmentally preferrable alternatives to coal and gas options, their highly variable output does raise challenges for delivering secure, affordable, and clean energy. This is particularly challenging for the electricity industries of emerging economies giving growing demand and limited financial resources. This thesis aims to address some of the limitations with existing frameworks, methods, and tools for assisting policymakers to plan electricity industry development, with a particular focus on better assessing future electricity generation options for emerging economies. It uses an open-source evolutionary programming-based optimisation model, National Electricity Market Optimiser (NEMO), to assess future generation options for the case study of Indonesia’s Java-Bali electricity grid. NEMO can model geographically and temporally variable wind and solar resources and solve least cost generation mixes in a highly configurable and transparent manner. A first study assessed the potential industry costs savings possible by recognising the reality of lower reliability standards in emerging economies than often assumed for modelling exercises. Accepting lower reliability outcomes not only reduces industry costs but also supports greater solar and wind deployment, hence better environmental outcomes. Next, the underlying evolutionary programming optimisation of NEMO was used to assess not just the least cost generation mix but the wider solution space, including generation portfolios that deliver total industry costs within 5% of the least cost solution highlighted the wide range of possible technology mixes that could potentially deliver a low cost future industry. Finally, NEMO was used to explore the potential implications of high variable renewable penetrations for operating reserves and hence power system security. The inevitability of some periods with both low wind and solar availability means that high renewables portfolios still feature significant dispatchable generation capacity. This means that the power system will generally have greater levels of operating reserves to cover possible plant failures than mixes with predominantly dispatchable generation. In summary, this thesis contributes to better understanding of the challenges and opportunities of deploying possible future high renewables in emerging economy electricity industries

    An optimal schedule model of multi-energy hubs network integrating solar energy

    Get PDF
    Recently, multi-energy systems based on energy hub are introduced because of significant benefits in reducing energy and emission cost. This paper proposed an optimal schedule model of multi-energy hubs networks consisting of energy hubs, renewable sources, and energy storage which are connected by electrical and natural gas distribution networks. In the proposed mixed-integer nonlinear programming model, the objective is to minimize the operation, energy, and emission costs of energy hubs with both renewable sources and storage and energy distribution networks. The proposed schedule framework allows simultaneously selections of optimal operation structure of EHs together with the optimal operation parameters of energy distribution networks and therefore this model can maximize the profit of the entire large-scale multi-energy hubs network. Besides, the operation parameters and energy loss of both electrical and natural gas distribution networks are considered in conjunction with optimal operation of energy hubs and thus guarantee the operation and optimization of the network in all operational scenarios. The IEEE 5-bus test system is utilized to demonstrate the applicability of the proposed model. The simulation results show the feasibility of the proposed model, and demonstrate that the energy hubs, renewable sources, and energy storage in the proposed structure significantly enhance the efficiency of the multi-energy hubs network by reducing not only energy and operation costs but also emission

    A nexus perspective on competing land demands: Wider lessons from a UK policy case study

    Get PDF
    As nations develop policies for low-carbon transitions, conflicts with existing policies and planning tools are leading to competing demands for land and other resources. This raises fundamental questions over how multiple demands can best be managed. Taking the UK as an empirical example, this paper critiques current policies and practices to explore the interdependencies at the water-energy-food nexus. It considers how current land uses and related policies affect the UK’s resilience to climate change, setting out an agenda for research and practice relevant to stakeholders in land-use management, policy and modelling. Despite recent progress in recognising such nexus challenges, most UK land-related policies and associated science continue to be compartmentalised by both scale and sector and seldom acknowledge nexus interconnections. On a temporal level, the absence of an over-arching strategy leaves inter-generational trade-offs poorly considered. Given the system lock-in and the lengthy policy-making process, it is essential to develop alternative ways of providing dynamic, flexible, practical and scientifically robust decision support for policy-makers. A range of ecosystem services need to be valued and integrated into a resilient land-use strategy, including the introduction of non-monetary, physical-unit constraints on the use of particular services

    Design for sustainable architecture and environments

    Get PDF
    This paper describes some of the research outcomes of a Knowledge Transfer Partnership (KTP) project partly funded by Department of Trade and Industry, UK. One of the aims of the project was to plan and develop designs for a range of autonomous eco-buildings through research into autonomous eco-building systems and techniques in order to identify best practice and the most appropriate systems for low-carbon buildings. The design of the Community Hall offering accommodations for a multi functional hall, café and exhibition, and offices, has been developed through partnership with mainstream design and construction companies in the region. Following a successful planning application and external fund raising exercise, the construction of the building is due to start shortly. The structure will be constructed using locally sourced materials and is designed to be ‘renewable’ whilst exceeding all the requirements of the current Building Regulations. It examines the potential of non traditional construction techniques and materials. The total environmental impact of the design as the result of environmental loads occurring during the life span of the building is estimated and compared with conventional practice. The building incorporates rain water collection, waste treatment, composting toilets and photovoltaics
    • …
    corecore