353,509 research outputs found

    Integrated Hydro-Economic Modelling: Challenges and Experiences in an Australian Catchment

    Get PDF
    Integrated catchment policies are widely used to manage natural resources in Australian catchments. Integration of environmental processes with socio-economic systems is often difficult due to the limitations of decision support tools. To support assessments of the environmental and economic trade-offs of changes in catchment management, fully integrated models are needed. This research demonstrates a Bayesian Network (BN) approach to integrating environmental modelling with economic valuation. The model incorporates hydrological, ecological and economic models for the George catchment in Tasmania. Choice experiments were used to elicit information about the non-market costs and benefits of environmental changes. This allows the efficiency of alternative management scenarios to be assessed.Hydro-economic modelling, Integrated catchment modelling, Ecological modelling, Valuation, Bayesian networks, Water quality, Community/Rural/Urban Development, Environmental Economics and Policy, Land Economics/Use,

    Integrating economic values and catchment modelling

    Get PDF
    Integrated catchment policies are widely used to manage natural resources in Australian catchments. Decision support tools available to aid integrated catchment management are often limited in their integration of environmental processes with socio-economic systems. Fully integrated models are required to support assessments of the environmental and economic trade-offs of catchment management changes. A Bayesian Network (BN) model is demonstrated to provide a suitable approach to integrate environmental modelling with economic valuation. The model incorporates hydrological, ecological and economic models for the George catchment in Tasmania. Information about the non-market costs and benefits of environmental changes is elicited using Choice Experiments, allowing an assessment of the efficiency of alternative management scenarios.Integrated catchment modelling, Bayesian networks, Uncertainty, Environmental values, Non-market valuation, Choice Modelling.,

    Integrated Resource Planning for a Chinese Urban Development

    Get PDF
    Urban areas manage vast quantities of energy, water and waste resources. In order to minimise the cost and environmental impact, optimisation modelling is often used in the design and operation of these systems. However, traditional modelling approaches only consider the energy, water and waste sectors in isolation. This approach neglects the synergies possible between these systems whereby outputs from one system form an input to another, and hence sets an upper bound on economic and environmental impact minimisation. We formulate a mixed integer linear programming (MILP) model which takes a ‘systems-of-infrastructure systems’ approach to show how resource consumption can be reduced. The model takes as inputs possible resource conversion and transportation infrastructure and resources, and resource demands, and returns the optimal infrastructure choice and layout. The model is called PRaQ because it models ‘processes, resources and qualities.’ We apply the model to the design of a new urban development in China for three scenarios of various levels of resource integration. Results are still to be obtained

    Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability

    Get PDF
    The integrated - environmental, economic and social - analysis of climate change calls for a paradigm shift as it is fundamentally a problem of complex, bottom-up and multi-agent human behaviour. There is a growing awareness that global environmental change dynamics and the related socio-economic implications involve a degree of complexity that requires an innovative modelling of combined social and ecological systems. Climate change policy can no longer be addressed separately from a broader context of adaptation and sustainability strategies. A vast body of literature on agent-based modelling (ABM) shows its potential to couple social and environmental models, to incorporate the influence of micro-level decision making in the system dynamics and to study the emergence of collective responses to policies. However, there are few publications which concretely apply this methodology to the study of climate change related issues. The analysis of the state of the art reported in this paper supports the idea that today ABM is an appropriate methodology for the bottom-up exploration of climate policies, especially because it can take into account adaptive behaviour and heterogeneity of the system's components.Review, Agent-Based Modelling, Socio-Ecosystems, Climate Change, Adaptation, Complexity.

    Creating a climate for food security: the business, people & landscapes in food production

    Get PDF
    AbstractBalancing human and environmental needs is urgent where food security and sustainability are under pressure from population increases and changing climates. Requirements of food security, social justice and environmental justice exacerbate the impact of agriculture on the supporting ecological environment. Viability of the Australian rural economy is intrinsically linked to food production and food security requiring systematic evaluation of climate change adaptation strategies for agricultural productivity.This food-systems research drew on global climate change literature to identify risks and adaptation. The transdisciplinary team applied specialist experience through collaboration in social science, economics and land-management to provide comprehensive methods to engage researchers and decision-makers making decisions across the food-system. Research focus on the dairy and horticulture sectors in the SW-WA and SEQld provided a comparative context in food-systems and regional economies. Expert knowledge was engaged through a series of panel meetings to test and challenge existing practice applying conceptual and empirical approaches in Structural Equation, Value-Chain, Supply-Chain modelling and Analytical Hierarchy modelling. This iterative action-research process provided immediate generation and transfer of expert knowledge across the involved sectors. The scenarios and adaptive strategies provide evidence-based pathways to strengthen food-systems; account for climate change mitigation and adaptation; and weather-proof regional economies in the face of climate change. Balancing human and environmental needs is urgent where food security and sustainability are under pressure from population increases and changing climates. Requirements of food security, social justice and environmental justice exacerbate the impact of agriculture on the supporting ecological environment. Viability of the Australian rural economy is intrinsically linked to food production and food security requiring systematic evaluation of climate change adaptation strategies for agricultural productivity.This food-systems research drew on global climate change literature to identify risks and adaptation. The transdisciplinary team applied specialist experience through collaboration in social science, economics and land-management to provide comprehensive methods to engage researchers and decision-makers making decisions across the food-system. Research focus on the dairy and horticulture sectors in the SW-WA and SEQld provided a comparative context in food-systems and regional economies. Expert knowledge was engaged through a series of panel meetings to test and challenge existing practice applying conceptual and empirical approaches in Structural Equation, Value-Chain, Supply-Chain modelling and Analytical Hierarchy modelling. This iterative action-research process provided immediate generation and transfer of expert knowledge across the involved sectors. The scenarios and adaptive strategies provide evidence-based pathways to strengthen food-systems; account for climate change mitigation and adaptation; and weather-proof regional economies in the face of climate change. The triple-bottom-line provided a comprehensive means of addressing social, economic and ecological requirements, and the modelling showed the interacting dynamics between these dimensions. In response to climate change, the agricultural sector must now optimise practices to address the interaction between economic, social and environmental investment. Differences in positions between the industry sector, the government and research sectors demonstrate the need for closer relationships between industry and government if climate change interventions are to be effectively targeted. Modelling shows that capacity for adaptation has a significant bearing on the success of implementing intervention strategies. Without intervention strategies to build viability and support, farm businesses are more likely to fail as a consequence of climate change. A framework of capitals that includes social components - cultural, human and social capital-, economic components -economic and physical capital - and ecological components -ecological and environmental capital - should be applied to address capacities. A priority assessment of climate change intervention strategies shows that strategies categorised as ‘Technology & Extension’ are most important in minimising risk from climate change impacts. To implement interventions to achieve ‘Food Business Resilience’, ‘Business Development’ strategies and alternative business models are most effective. ‘Research and Development’ interventions are essential to achieve enhanced ‘Adaptive Capacity’.The individual components of TBL Adaptive Capacity can be achieved through ‘Policy and Governance’ interventions for building ‘Social Capital’ capacity, ‘Research and Development’ will develop ‘Economic Capital’, and ‘Business Development’ strategies will build ‘Ecological Capital’.These strategic interventions will promote food security and maintain resilience in local food systems, agricultural production communities and markets, global industrial systems, and developing world food systems. Climate change mitigation and adaptation interventions reflect a rich conceptualisation drawing from the Australian context, but also acknowledging the moral context of global association.Please cite this report as:Wardell-Johnson, A, Uddin, N, Islam, N, Nath, T, Stockwell, B, Slade, C 2013 Creating a climate for food security: the businesses, people and landscapes in food production, National Climate Change Adaptation Research Facility, Gold Coast, pp. 144.Balancing human and environmental needs is urgent where food security and sustainability are under pressure from population increases and changing climates. Requirements of food security, social justice and environmental justice exacerbate the impact of agriculture on the supporting ecological environment. Viability of the Australian rural economy is intrinsically linked to food production and food security requiring systematic evaluation of climate change adaptation strategies for agricultural productivity.This food-systems research drew on global climate change literature to identify risks and adaptation. The transdisciplinary team applied specialist experience through collaboration in social science, economics and land-management to provide comprehensive methods to engage researchers and decision-makers making decisions across the food-system. Research focus on the dairy and horticulture sectors in the SW-WA and SEQld provided a comparative context in food-systems and regional economies. Expert knowledge was engaged through a series of panel meetings to test and challenge existing practice applying conceptual and empirical approaches in Structural Equation, Value-Chain, Supply-Chain modelling and Analytical Hierarchy modelling. This iterative action-research process provided immediate generation and transfer of expert knowledge across the involved sectors. The scenarios and adaptive strategies provide evidence-based pathways to strengthen food-systems; account for climate change mitigation and adaptation; and weather-proof regional economies in the face of climate change. The triple-bottom-line provided a comprehensive means of addressing social, economic and ecological requirements, and the modelling showed the interacting dynamics between these dimensions. In response to climate change, the agricultural sector must now optimise practices to address the interaction between economic, social and environmental investment. Differences in positions between the industry sector, the government and research sectors demonstrate the need for closer relationships between industry and government if climate change interventions are to be effectively targeted. Modelling shows that capacity for adaptation has a significant bearing on the success of implementing intervention strategies. Without intervention strategies to build viability and support, farm businesses are more likely to fail as a consequence of climate change. A framework of capitals that includes social components - cultural, human and social capital-, economic components -economic and physical capital - and ecological components -ecological and environmental capital - should be applied to address capacities. A priority assessment of climate change intervention strategies shows that strategies categorised as ‘Technology & Extension’ are most important in minimising risk from climate change impacts. To implement interventions to achieve ‘Food Business Resilience’, ‘Business Development’ strategies and alternative business models are most effective. ‘Research and Development’ interventions are essential to achieve enhanced ‘Adaptive Capacity’.The individual components of TBL Adaptive Capacity can be achieved through ‘Policy and Governance’ interventions for building ‘Social Capital’ capacity, ‘Research and Development’ will develop ‘Economic Capital’, and ‘Business Development’ strategies will build ‘Ecological Capital’.These strategic interventions will promote food security and maintain resilience in local food systems, agricultural production communities and markets, global industrial systems, and developing world food systems. Climate change mitigation and adaptation interventions reflect a rich conceptualisation drawing from the Australian context, but also acknowledging the moral context of global association

    Tree-crop interactions and their environmental and economic implications in the presence of carbon-sequestration payments

    Get PDF
    Growing trees with crops has environmental and economic implications. Trees can help prevent land degradation and increase biodiversity while at the same time allow for the continued use of the land to produce agricultural crops. In fact, growing trees alongside crops is known to improve both the productivity and sustainability of the land. However, due to high labour-input requirements, high costs of establishment, and delayed revenue returns, trees are often not economically attractive to landholders. Because of the Kyoto Protocol, and the growing emphasis on market-based solutions to environmental problems, the ability of trees to sequester and store CO2 has altered the economic landscape of agroforestry systems. The economic and management implications of carbon-sequestration payments on agroforestry systems are addressed in this study using a bioeconomic modelling approach. An agroforestry system in Indonesia is simulated using a biophysical process model. A general economic analysis of this system, from the standpoint of individual landholders, is then developed and the implications for management and policy are discussed.agroforestry, bioeconomics, tree/crop interactions, carbon credits, baselines, Environmental Economics and Policy, Land Economics/Use,

    Identifying ecosystem key factors to support sustainable water management

    Get PDF
    There is a growing consensus that sustainable development requires a behavioral change, forced by firm decision-making. However, existing decision-supporting tools are unlikely to provide relevant information, hampered by the complexity of combined socio-economic and natural systems. Protecting the intrinsic value of ecosystems and providing sufficient natural resources for human use at the same time leads up to a wide span of management, ranging from species traits to governance. The aim of this study is to investigate the interactions between the natural and economic systems from the perspective of sustainable development. The way to reduce systems complexity by selecting key factors of ecosystem functioning for policy and management purposes is discussed. To achieve this, the Pentatope Model is used as a holistic framework, an ecosystem nodes network is developed to select key factors, and a combined natural and socio-economic valuation scheme is drawn. These key factors—abiotic resources and conditions, biodiversity, and biomass—are considered fundamental to the ecosystem properties habitat range and carrying capacity. Their characteristics are discussed in relation to sustainable water management. The conclusion is that sustainable development requires environmental decision-making that includes the intrinsic natural value, and should be supported by ecological modelling, additional environmental quality standards, and substance balances

    Modelling Waikato Farm Nitrogen Discharges for Policy Analysis

    Get PDF
    This study describes the development of bio economic models examining the economic and water quality impact of various proposed policy options in the Upper Waikato catchment. In the first phase nitrogen emissions are determined for representative farming systems using the Overseer nutrient budget model. These model components are integrated into an economic model, which predicts producer responses to various policy options. The second phase determines catchment wide costs and water quality impacts of riparian buffers by combining geographic information system, bio economic modelling and experimental data. The results of the study signals directions for policy initiatives and further analysis exploring policy design and all costs associated with production adjustment.Riparian margins, Non point pollution, Nitrogen, Linear programming, and Environmental policy, Community/Rural/Urban Development, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Health Economics and Policy, Industrial Organization, Land Economics/Use, Livestock Production/Industries, Research Methods/ Statistical Methods, Resource /Energy Economics and Policy,

    Exploring sustainable technical alternatives for Dutch dairy systems by integrating agro-economic modelling and public preferences assessment

    Get PDF
    Theoretical discussions on the joint consideration of multiple (economic, social and environmental) functions when assessing the sustainability of human actions are increasing. However few studies exist that integrate the social demand for multifunctional agriculture in the evaluation of the sustainability and the global welfare of society. This paper presents a methodology to answer to these questions: Which are the social demands for the multiple functions of agriculture and how can they be quantified?; Which are the feasible technical alternatives of land management to satisfy these demands?; What is the value of the land use alternatives according to social preferences and which alternatives optimally satisfy the social preferences?. The net utility of alternatives for society, and therefore their sustainability, will be measured as the sum of market and non-market net changes compared to the current situation. The proposed methodology combines economic valuation, integrated modelling, stakeholder analysis, and multi-criteria evaluation. In particular, different multi-criteria methods (QFD/ANP) and agro-economic modelling and optimizing tools (Landscape IMAGES) were used. The methodology will be fully illustrated through the case study of dairy farming landscapes in the Northern Friesian Woodlands, The Netherlands. Results show that for the case study it is possible to change current farming techniques and achieve more sustainable farming systems. The more sustainable alternatives are beneficial for farmers, obtaining higher gross margin, and for government, decreasing the current levels of subsidies in agri-environmental programs. Even current environmental restrictions can be slightly relaxed without compromising social demands to the analysed Dutch dairy farming systems.Land-use planning, public preferences, agro-economic models, Environmental Economics and Policy, Livestock Production/Industries,

    Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling

    Get PDF
    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex ways to influence production sustainability. In a mixed-methods approach, we combine qualitative and quantitative data to develop and simulate a system dynamics model that explores the systemic interaction of these drivers on the economic, environmental and social sustainability of agricultural production. We then use this model to evaluate the role of each driver in determining the differences in sustainability between three distinct production systems: crops only, livestock only, and an integrated crops and livestock system. The result from these modelling efforts found that the greatest potential for sustainability existed with the crops only production system. While this study presents a stand-alone contribution to sector knowledge and practice, it encourages future research in this sector that employs similar systems-based methods to enable more sustainable practices and policies within agricultural production
    corecore