717 research outputs found

    Modelling binary alloy solidification with adaptive mesh refinement

    Get PDF
    The solidification of a binary alloy results in the formation of a porous mushy layer, within which spontaneous localisation of fluid flow can lead to the emergence of features over a range of spatial scales. We describe a finite volume method for simulating binary alloy solidification in two dimensions with local mesh refinement in space and time. The coupled heat, solute, and mass transport is described using an enthalpy method with flow described by a Darcy-Brinkman equation for flow across porous and liquid regions. The resulting equations are solved on a hierarchy of block-structured adaptive grids. A projection method is used to compute the fluid velocity, whilst the viscous and nonlinear diffusive terms are calculated using a semi-implicit scheme. A series of synchronization steps ensure that the scheme is flux-conservative and correct for errors that arise at the boundaries between different levels of refinement. We also develop a corresponding method using Darcy's law for flow in a porous medium/narrow Hele-Shaw cell. We demonstrate the accuracy and efficiency of our method using established benchmarks for solidification without flow and convection in a fixed porous medium, along with convergence tests for the fully coupled code. Finally, we demonstrate the ability of our method to simulate transient mushy layer growth with narrow liquid channels which evolve over time

    A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification

    Get PDF
    A fully-implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully-implicit time discretisation scheme with variable steps size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully-explicit methods, with respect to CPU time and accuracy, is shown. Due to the high non-linearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour

    An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification

    Get PDF
    Using state-of-the-art numerical techniques, such as mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver, the phase-field equations for the non-isothermal solidification of a dilute binary alloy have been solved. Using the quantitative, thin-interface formulation of the problem we have found that at high Lewis number a minimum in the dendrite tip radius is predicted with increasing undercooling, as predicted by marginal stability theory. Over the dimensionless undercooling range 0.2–0.8 the radius selection parameter, σ*, was observed to vary by over a factor of 2 and in a non-monotonic fashion, despite the anisotropy strength being constant

    Phase-field simulations of solidification in binary and ternary systems using a finite element method

    Full text link
    We present adaptive finite element simulations of dendritic and eutectic solidification in binary and ternary alloys. The computations are based on a recently formulated phase-field model that is especially appropriate for modelling non-isothermal solidification in multicomponent multiphase systems. In this approach, a set of governing equations for the phase-field variables, for the concentrations of the alloy components and for the temperature has to be solved numerically, ensuring local entropy production and the conservation of mass and inner energy. To efficiently perform numerical simulations, we developed a numerical scheme to solve the governing equations using a finite element method on an adaptive non-uniform mesh with highest resolution in the regions of the phase boundaries. Simulation results of the solidification in ternary Ni60_{60}Cu40x_{40-x}Crx_{x} alloys are presented investigating the influence of the alloy composition on the growth morphology and on the growth velocity. A morphology diagram is obtained that shows a transition from a dendritic to a globular structure with increasing Cr concentrations. Furthermore, we comment on 2D and 3D simulations of binary eutectic phase transformations. Regular oscillatory growth structures are observed combined with a topological change of the matrix phase in 3D. An outlook for the application of our methods to describe AlCu eutectics is given.Comment: 5 pages, 3 figures, To appear in the proceedings of 14th "International Conference on Crystal Growth", ICCG-14, 9-13 August 2004 Grenoble Franc

    Numerično modeliranje dendritskega strjevanja na podlagi formulacije faznega polja in prilagodljivega brezmrežnega rešitvenega postopka

    Get PDF
    The main aim of the dissertation is to develop a novel numerical approach for an accurate and computationally efficient modelling of dendritic solidification, which is one of the most commonly observed phenomena in the industrial casting of the metallic alloys. The size and the morphology of dendritic structures as well as the distribution of the solute within them critically effect the mechanical and the electro-chemical properties of the solidified material. The numerical modelling of dendritic solidification can be applied for an in-depth understanding and optimisation of the casting process under various solidification conditions and chemical compositions of the alloy under consideration. The dendritic solidification of pure materials and dilute multi-component alloys is considered in the dissertation. The phase field formulation is applied for the modelling of dendritic solidification. The formulation is based on the introduction of the continuous phase field variable that is constant in the bulk of the solid and liquid phases. The phase field variable has a smooth transition from the value denoting the solid phase to the value denoting the liquid phase at the solid-liquid interface over the characteristic interface thickness. A phase field model yields a system of coupled non-linear parabolic partial differential equations that govern the evolution of the phase field and other thermodynamic variables. The meshless radial basis function-generated finite-differences (RBF-FD) method is used for the spatial discretisation of the system of partial differential equations. The forward Euler scheme is applied for the temporal discretisation. Fifth-degree polyharmonic splines are used as the shape functions in the RBF-FD method. A second-order accurate RBF-FD method is achieved by augmenting the shape functions with monomials up to the second degree. The adaptive solution procedure is developed in order to speed-up the calculations. The procedure is based on the quadtree domain decomposition of a rectangular computational domain into rectangular computational sub-domains of different sizes. Each quadtree sub-domain has its own regular or scattered distribution of computational nodes in which the RBF-FD method and the forward Euler scheme apply for the discretisation of the system of partial differential equations. The adaptive solution procedure dynamically ensures the prescribed highest density of the computational nodes at the solid-liquid interface and the lowest-possible density in the bulk of the solid and liquid phases. The adaptive time-stepping is employed to further speed-up the calculations. The stable time step in the forward Euler scheme depends on the density of the computational nodeshence, different time steps can be used in quadtree sub-domains with different node densities. The main originality of the present work is the use of the RBF-FD method for the thorough analysis of the impact of the type of the node distribution and the size of a local sub-domain to the accuracy when the phase field modelling of dendritic solidification for arbitrary preferential growth directions is considered. It is shown how the use of the scattered node distribution reduces the undesirable mesh-induced anisotropy effects, present when the partial differential equations are discretisied on a regular node distribution. The main advantage of the RBF-FD method for the phase field modelling of dendritic growth is the simple discretisation of the partial differential equations on the scattered node distributions. The RBF-FD method is, for the first time, used in combination with the spatial-temporal adaptive solution procedure based on the quadtree domain decomposition. The adaptive solution procedure successfully speeds-up the calculationshowever, the advantages of the use of the scattered node distribution are partly compromised due to the impact of regularity in the quadtree domain decomposition.Glavni cilj disertacije je razvoj novega numeričnega pristopa za natančno in računsko učinkovito modeliranje dendritskega strjevanja. Dendritsko strjevanje je eden najpogosteje opaženih pojavov pri industrijskem ulivanju kovinskih zlitin. Velikost in morfologija dendritskih struktur ter porazdelitev topljencev v njih ključno vplivajo na mehanske in elektro-kemijske lastnosti strjenega materiala. Numerično modeliranje dendritskega strjevanja se lahko uporablja za poglobljeno razumevanje in optimizacijo procesa ulivanja pri različnih pogojih strjevanja in pri različnih kemijskih sestavah obravnavane zlitine. V disertaciji obravnavamo dendritsko strjevanje čistih snovi in razredčenih več-sestavinskih zlitin. Za modeliranje dendritskega strjevanja uporabimo formulacija faznega polja. Formulacija temelji na uvedbi zvezne spremenljivke faznega polja, ki je konstantna v trdni in kapljeviti fazi. Spremenljivka faznega polja ima na medfaznem robu zvezen prehod preko značilne debeline medfaznega roba od vrednosti, ki označuje trdno fazo, do vrednosti, ki označuje kapljevito fazo. Model faznega polja poda sistem sklopljenih nelinearnih paraboličnih parcialnih diferencialnih enačb, ki opisujejo časovni razvoj faznega polja in ostalih termodinamskih spremenljivk. Za krajevno diskretizacijo sistema parcialnih diferencialnih enačb uporabimo brezmrežno metodo z radialnimi baznimi funkcijami generiranih končnih razlik (RBF-KR). Za časovno diskretizacijo uporabimo eksplicitno Eulerjevo shemo. Poliharmonične zlepke petega reda uporabimo kot oblikovne funkcije v metodi RBF-KR. Natančnost drugega reda metode RBF-KR dosežemo z dodajanjem monomov do vključno drugega reda k oblikovnim funkcijam. Za pospešitev izračunov razvijemo prilagodljiv rešitveni postopek. Postopek temelji na razdelitvi pravokotne računske domene na pravokotne računske pod-domene različnih velikosti z uporabo štiriškega drevesa. Vsaka pod-domena na štiriškem drevesu vsebuje svojo lastno regularno ali razmetano porazdelitev računskih točk, v katerih z uporabo metode RBF-KR in eksplicitne Eulerjeve sheme diskretiziramo sistem parcialnih diferencialnih enačb. Prilagodljiv rešitveni postopek dinamično zagotavlja predpisano najvišjo gostoto računskih točk na trdno-kapljevitem medfaznem robu in najmanjšo možno gostoto v notranjosti trdne in kapljevite faze. Za dodatno pohitritev izračunov uporabimo prilagodljivo časovno korakanje. Stabilen časovni korak v eksplicitni Eulerjevi shemi je odvisen od gostote računskih točk, zaradi česar lahko uporabimo različne časovne korake v pod-domenah štiriškega drevesa z različnimi gostotami točk. Glavna novost predstavljenega dela je v uporabi metode RBF-KR za temeljito analizo vpliva tipa porazdelitve računskih točk in velikosti lokalnih pod-domen na natančnost pri modeliranju dendritskega strjevanja pri poljubnih preferenčnih smereh rasti z uporabo metode faznega polja. Pokažemo, kako uporaba razmetanih računskih točk zmanjša neželjen vpliv mrežne anizotropije, ki je prisotna, kadar parcialne diferencialne enačbe diskretiziramo na regularni porazdelitvi računskih točk. Glavna prednost metode RBF-KR za modeliranje dendritskega strjevanja je preprosta diskretizacija parcialnih diferencialnih enačb na razmetanih porazdelitvah računskih točk. Metoda RBF-KR je prvič uporabljena v kombinaciji s krajevno-časovnim prilagodljivim rešitvenim postopkom, ki temelji na razdelitvi računske domene s štiriškim drevesom. Prilagodljiv rešitveni postopek uspešno pohitri izračune, vendar se prednosti uporabe razmetane porazdelitve računskih točk delno zmanjšajo zaradi vpliva regularnosti pri razdelitvi računske domene s štiriškim drevesom

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes

    Towards a 3-dimensional phase-field model of non-isothermal alloy solidification

    Get PDF
    We review the application of advanced numerical techniques such as adaptive mesh refinement, implicit time-stepping, multigrid solvers and massively parallel implementations as a route to obtaining solutions to the 3-dimensional phase-field problem for coupled heat and solute transport during non-isothermal alloy solidification. Using such techniques it is shown that such models are tractable for modest values of the Lewis number (ratio of thermal to solutal diffusivities). Solutions to the 3-dimensional problem are compared with existing solutions to the equivalent 2-dimensional problem

    2D/3D Simulation of macrosegregation: a comparison between codes on a small cavity and on a large ingot

    No full text
    International audienceThis paper presents the coupled resolution of momentum, energy and solute conservation equations, for binary alloys by three different codes. The microsegregation is governed by the lever rule and the liquid flow in the mushy zone is modeled by a Darcy law. A 2D FV code, SOLID, a 2D FE code, R2SOL and a 3D FE code, THERCAST, are compared on an academic case on which experimental measurements have been done by Hebditch and Hunt, and on a benchmark steel ingot for industrial application. An adaptive anisotropic remeshing technique is used in each FE codes. For both codes, this technique is shortly described
    corecore