587 research outputs found

    17-11 Evaluation of Transit Priority Treatments in Tennessee

    Get PDF
    Many big cities are progressively implementing transit friendly corridors especially in urban areas where traffic may be increasing at an alarming rate. Over the years, Transit Signal Priority (TSP) has proven to be very effective in creating transit friendly corridors with its ability to improve transit vehicle travel time, serviceability and reliability. TSP as part of Transit Oriented Development (TOD) is associated with great benefits to community liveability including less environmental impacts, reduced traffic congestions, fewer vehicular accidents and shorter travel times among others.This research have therefore analysed the impact of TSP on bus travel times, late bus recovery at bus stop level, delay (on mainline and side street) and Level of Service (LOS) at intersection level on selected corridors and intersections in Nashville Tennessee; to solve the problem of transit vehicle delay as a result of high traffic congestion in Nashville metropolitan areas. This study also developed a flow-delay model to predict delay per vehicle for a lane group under interrupted flow conditions and compared some measure of effectiveness (MOE) before and after TSP. Unconditional green extension and red truncation active priority strategies were developed via Vehicle Actuated Programming (VAP) language which was tied to VISSIM signal controller to execute priority for transit vehicles approaching the traffic signal at 75m away from the stop line. The findings from this study indicated that TSP will recover bus lateness at bus stops 25.21% to 43.1% on the average, improve bus travel time by 5.1% to 10%, increase side street delay by 15.9%, and favour other vehicles using the priority approach by 5.8% and 11.6% in travel time and delay reduction respectively. Findings also indicated that TSP may not affect LOS under low to medium traffic condition but LOS may increase under high traffic condition

    Simulated Conflict Based Safety Evaluation Models for Hetergenous Traffic in Controlled Intersections

    Get PDF
    In this paper, an attempt is made to investigate how traffic conflicts identified from microsimulation models can be correlated with explanatory variables which have been traditionally used in accident prediction models. In developing countries with heterogenous traffic streams, availability of accident data is limited especially since accidents are rare events.  Such traffic streams normally have some unique attributes like absence of lane discipline, presence of non-motorized vehicles. In urban intersections with such slow-moving traffic streams, conflicts are more useful determinants of intersection safety rather than previous records of accidents since geometry of intersection may be changed from the time to time. Simulated conflict-based safety evaluation models were developed for intersections of Dhaka city. The intersections were modeled in VISSIM after suitable calibration, for 8 hours of peak hour traffic. Surrogate Safety Assessment Model (SSAM) was used to identify the corresponding simulated hourly conflicts from the resulting trajectory files. It was found that hourly simulated conflicts had a significant statistical relationship with observed hourly traffic volume entering the intersection from major and minor roads. Increasing volumes of non-motorized traffic was found to contribute to intersection safety

    Calibrating and modelling of statistical delay for signalized intersections at al-Nasiriyah City in Iraq

    Get PDF
    In this paper develops an empirical delay model for delay prediction by taking lane group parameters to make delay model in the field where delay have considered very important measure that effects at signalized intersection because of relation of delay with performance of signalized intersection, lost travel time, fuel consumption, feasible of movement, discomfortable of drivers also, it is considered the primary measure to determine the level of service at signalized intersection. The main aim of this study is to make a field delay model at signalized intersection by using microsimulation software to calibrate data and using statistical software (SPSS) to create model. The methodology of the study is made by using video recording and manual collected data by taken three biggest signalized intersections where the collection data was very challenged specifically speed forward and uncontrollable drivers and others factors. Sidra Intersection 6.0 is described as an advanced micro-analytical model with a lane-by-lane method and a vehicle drive-cycle model that is used to estimate capacity and performance measures through an iterative method. Calibration of the software is very necessary to find accurate model that can be described the field delay. Multiple Linear Regression analysis (MuLRa) has been generally statistical method to create a model. It has been taken into consideration in the modelling of delay at signalized intersection and adjusted R² is 80% with multi factors that effect on field delay. Vehicle speed has been improved very significance level and impact factor on delay at signalized intersection by lane group experimental method and this finding very important for all simulation software should be taken that in the accounts

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Modelling the Modal Shift Effects of Converting a General Traffic Lane into a Dedicated Bus Lane

    Get PDF
    This paper presents an analytical framework for evaluating the performance of dedicated bus lanes. It assumes that under a designated travel demand, the traffic volume on a corridor changes with the modal shifts. The modal shift affects the operations of both bus traffic and car traffic and eventually, an equilibrium bus share ratio that maximizes the performance of the corridor will be reached. Microsimulation modelling is employed to assess the traffic operations under various demand levels and bus share ratios. The results show that converting a general lane into a bus lane significantly reduces bus delay. For car traffic, the overall trend is that delay increases after converting a general lane to a bus lane. In addition, delay decreases with the increase of bus share ratio. Nevertheless, when bus share ratio reaches 0.6 (demand less than 10,000 passengers per hour, pph; or 0.8 when demand increases up to 14,000 pph), there is no significant difference in delay between the two scenarios. The identified bus share ratios have the potential to direct the development of bus lane warrants. Finally, this research recommends that the Transportation Demand Management (TDM) strategies shall be developed to stimulate the modal shifts towards the identified optimal bus share ratio.</p

    Traffic Signal Controller Optimization Through VISSIM to Minimize Traffic Congestion, CO and NOx Emissions, and Fuel Consumption

    Get PDF
    In developing countries with heterogeneous traffic, such as Sri Lanka, it is possible to observe severe traffic congestion at intersections and traffic corridors. The main objective of this study was to demonstrate the optimization of traffic signal controllers using VISSIM microsimulation software. It aimed to minimize traffic congestion, emissions, and fuel consumption. This study focused on developing a traffic signal controller optimization program for a congested traffic corridor which consisted of a three-legged signalized intersection, a four-legged unsignalized intersection, and a three-legged unsignalized intersection. The entire corridor was modeled here, and the already signalized three-legged intersection was optimized. Traffic signal controller optimization was done separately through the built-in optimization features in VISSIM and Webster’s Method. The results showed that emissions and fuel consumption were reduced by 14.89 % in VISSIM optimization and 14.11% in optimization using Webster’s Method. Through the comparison between the VISSIM optimized signal timing and manually calculated signal timing, it was found that the signal timing optimization provides much more improved results than the manual signal timing calculations. Using the proposed methodology, the traffic signal controllers can be optimized within a short duration in very few steps without any iterations compared to the existing traffic signal controller optimization techniques. Therefore, the proposed methodology is a good alternative method to optimize the traffic signal controllers
    • …
    corecore