14 research outputs found

    μ—°μ„± 및 μƒμž¬ν‘μˆ˜μ„± μ „μžμ†Œμžμš© λΉ„νœ˜λ°œμ„± λ©”λͺ¨λ¦¬ μ†Œμžμ™€ μ§‘μ μ„Όμ„œ κ΅¬ν˜„

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 화학생물곡학뢀, 2015. 8. κΉ€λŒ€ν˜•.Over years, major advances in healthcare have been made through research in the fields of nanomaterials and microelectronics technologies. However, the mechanical and geometrical constraints inherent in the standard forms of rigid electronics have imposed challanges of unique integration and therapeutic delivery in non-invasive and minimally invasive medical devices. Here, we describe two types of multifunctional electronic systems. The first type is wearable-on-the-skin systems that address the challenges via monolithic integration of nanomembranes fabricated by top-down approach, nanotubes and nanoparticles assembled by bottom-up strategies, and stretchable electronics on tissue-like polymeric substrate. The system consists of physiological sensors, non-volatile memory, logic gates, and drug-release actuators. Some quantitative analyses on the operation of each electronics, mechanics, heat-transfer, and drug-diffusion characteristic validated their system-level multi-functionalities. The second type is a bioresorbable electronic stent with drug-infused functionalized nanoparticles that takes flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and photothermal therapy. In vivo and ex vivo animal experiments as well as in vitro cell researches demonstrate its unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system. As demonstrations of these technologies, we herein highlight two representative examples of multifunctional systems in order of increasing degree of invasiveness: electronically enabled wearable patch and endovascular electronic stent that incorporate onboard physiological monitoring, data storage, and therapy under moist and mechanically rigorous conditions.Contents Abstract Chapter 1. Introduction 1.1 Organic flexible and wearable electronics.................................................. 1 1.2 Inorganic flexible and wearable electronics............................................... 14 1.3 Flexible non-volatile memory devices.......................................................... 25 1.4 Bioresorbable materials and devices........................................................... 34 References Chapter 2. Multifunctional wearable devices for diagnosis and therapy of movement disorders 2.1 Introduction ................................................................................. 45 2.2 Experimental Section ......................................................................... 49 2.3 Result and Discussion ........................................................................ 65 2.4 Conclusion ................................................................................... 95 References Chapter 3. Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics 3.1 Introduction ................................................................................ 101 3.2 Experimental Section ........................................................................ 104 3.3 Result and Discussion ....................................................................... 107 3.4 Conclusion .................................................................................. 138 References Chapter 4. Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases 4.1 Introduction ................................................................................ 148 4.2 Experimental Section ........................................................................ 151 4.3 Result and Discussion ....................................................................... 173 4.4 Conclusion .................................................................................. 219 References κ΅­λ¬Έ 초둝 (Abstract in Korean) .................................................................. 230Docto

    Ultra-thin and flexible CMOS technology: ISFET-based microsystem for biomedical applications

    Get PDF
    A new paradigm of silicon technology is the ultra-thin chip (UTC) technology and the emerging applications. Very thin integrated circuits (ICs) with through-silicon vias (TSVs) will allow the stacking and interconnection of multiple dies in a compact format allowing a migration towards three-dimensional ICs (3D-ICs). Also, extremely thin and therefore mechanically bendable silicon chips in conjunction with the emerging thin-film and organic semiconductor technologies will enhance the performance and functionality of large-area flexible electronic systems. However, UTC technology requires special attention related to the circuit design, fabrication, dicing and handling of ultra-thin chips as they have different physical properties compared to their bulky counterparts. Also, transistors and other active devices on UTCs experiencing variable bending stresses will suffer from the piezoresistive effect of silicon substrate which results in a shift of their operating point and therefore, an additional aspect should be considered during circuit design. This thesis tries to address some of these challenges related to UTC technology by focusing initially on modelling of transistors on mechanically bendable Si-UTCs. The developed behavioural models are a combination of mathematical equations and extracted parameters from BSIM4 and BSIM6 modified by a set of equations describing the bending-induced stresses on silicon. The transistor models are written in Verilog-A and compiled in Cadence Virtuoso environment where they were simulated at different bending conditions. To complement this, the verification of these models through experimental results is also presented. Two chips were designed using a 180 nm CMOS technology. The first chip includes nMOS and pMOS transistors with fixed channel width and two different channel lengths and two different channel orientations (0° and 90°) with respect to the wafer crystal orientation. The second chip includes inverter logic gates with different transistor sizes and orientations, as in the previous chip. Both chips were thinned down to ∼20m using dicing-before-grinding (DBG) prior to electrical characterisation at different bending conditions. Furthermore, this thesis presents the first reported fully integrated CMOS-based ISFET microsystem on UTC technology. The design of the integrated CMOS-based ISFET chip with 512 integrated on-chip ISFET sensors along with their read-out and digitisation scheme is presented. The integrated circuits (ICs) are thinned down to ∼30m and the bulky, as well as thinned ICs, are electrically and electrochemically characterised. Also, the thesis presents the first reported mechanically bendable CMOS-based ISFET device demonstrating that mechanical deformation of the die can result in drift compensation through the exploitation of the piezoresistive nature of silicon. Finally, this thesis presents the studies towards the development of on-chip reference electrodes and biodegradable and ultra-thin biosensors for the detection of neurotransmitters such as dopamine and serotonin

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Structural, Thermodynamic, and Electronic Properties of Mixed Ionic/Electronic Conductor Materials

    Get PDF
    Due to the mainstream CMOS technology facing a rapid approach to the fundamental downscaling limit, beyond CMOS technologies are under active investigation and development with the intention of revolutionizing and sustaining a wide range of applications including sensors, cryptography, neuromorphic and quantum computing, memory, and logic, among others. Resistive switching electronics, for example, are devices that can change their electrical resistance with an applied external field. Despite their simple metal-insulator-metal structure, resistive switching devices exhibit an intricate set of IV characteristics based on the chemical composition of the solid electrolyte that ranges from non-volatile bipolar and non-polar switching to volatile threshold switching (abrupt but reversible change in resistance). This rich variety of electrical responses offer new alternatives to traditional CMOS applications in the areas of RF-signal switching, relaxation oscillators, over-voltage protection, and notably, memory cells and two-terminal non-linear selector devices. With the aim of unraveling the physics behind two of such conduction mechanisms, filamentary and threshold, in electrochemical cells consisting solid mixed ionic-electronic conductor electrolytes, this work focused on using first-principles calculations to characterize the structural, thermodynamic, and electronic properties of copper-doped amorphous silicon dioxide and copper-doped germanium-based glassy chalcogenides. The Cu/a-SiO2 system is a promising candidate for resistive switching memory applications. The conduction mechanism in the low-resistance state is known to be filamentary, that is, a physical metallic filament bridges between the metallic electrodes through the amorphous silica. However, many fundamental materials processes that would aid the design and optimization of this devices, such the shape and size of stable metallic filaments, remain unknown. In the first part of this work, the morphology and diffusion of small copper clusters embedded in amorphous silicon dioxide were characterized by density functional theory calculations. The average formation energy of a single copper ion in the amorphous matrix is found to be 2.4 eV, about 50% lower than in the case of silicon dioxide in its cristobalite or quartz phases. The theoretical predictions show that copper clusters with an equiaxed morphology are always energetically favorable relative to the dissolved copper ions in a-SiO2; hence, stable clusters do not exhibit a critical size. The stochasticity in the atomistic structure of the amorphous silicon dioxide leads to a broad distribution activation energies for diffusion of copper in the matrix, ranging from 0.4 to 1.1 eV. Since ab initio molecular dynamics are prohibitively expensive to simulate the switching process in Cu/a-SiO2 electrochemical metallization cells, a multi-scale simulation approach based on electrochemical dynamics with implicit degrees of freedom and density functional theory was developed to study the electronic evolution during metallic filament formation cells. These simulations suggest that the electronic transport in the low-resistance configuration is attributed to copper derived states belonging to the filament bridging between electrodes. Interestingly, the participation of states derived from intrinsic defects in the amorphous SiO2 around the Fermi energy are negligible and do not contribute to conduction. Unlike the Cu/a-SiO2 system which only exhibits filamentary switching, copper-doped germanium-based glassy chalcogenides show filamentary or threshold type of conduction depending on the chemical composition of the glass and copper concentration. Ab initio molecular dynamics based on density functional theory is used to understand the atomistic origin of the electronic transport in these materials. The theoretical predictions show that glasses containing tellurium tend to favor the formation of copper clusters; hence, these materials exhibit filamentary conduction. Threshold conduction is predicted to be the transport mechanism for glassy sulfides and selenides due to the ability of copper to remain dissolved in the amorphous matrix even at high metal concentration. Furthermore, the charge carrier transport in sulfur and selenium glasses was found to be assisted by defective states derived from chalcogen atoms whose bonds exhibit a polar character. Finally, taking advantage of the van der Waals gap as intercalation sites and crystal order in molybdenum disulfide, a novel mixed ionic-electronic conductor material based on copper and silver intercalation of MoS2 is proposed. The theoretical predictions show that on average, the intercalation energy of copper into MoS2 is 1 eV, while intercalation of silver shows a strong dependence on concentration ranging from 2.2 to 0.75 eV for low and high concentrations, respectively. The activation energy for diffusion of copper and silver intercalated within the van der Waals gap of MoS2 is predicted to be 0.32 and 0.38 eV, respectively, comparable to other superionic conductors. Upon Cu and Ag intercalation, MoS2 undergoes a semiconductor-to-metal transition, where the in-plane and out-of-plane conductances are comparable and exhibit a linear dependence with metal concentration
    corecore