98 research outputs found

    Verifying the distributed real-time network protocol RTnet using Uppaal

    Get PDF
    RTnet is a distributed real-time network protocol for fully-connected local area networks with a broadcast capability. It supports streaming real-time and non-realtime traffic and on-the-fly addition and removal of network nodes. This paper presents a formal analysis of RTnet using the model checker Uppaal. Besides normal protocol behaviour, the analysis focuses on the fault-handling properties of RTnet, in particular recovery after packet loss. Both qualitative and quantitative properties are presented, together with the verification results and conclusions about the robustness of RTnet

    Model Checking via Reachability Testing for Timed Automata

    Get PDF
    In this paper we develop an approach to model-checking for timed automata via reachability testing. As our specification formalism, we consider a dense-time logic with clocks. This logic may be used to express safety and bounded liveness properties of real-time systems. We show how to automatically synthesize, for every logical formula phi, a so-called test automaton T_phi in such a way that checking whether a system S satisfies the property phi can be reduced to a reachability question over the system obtained by making T_phi interact with S. The testable logic we consider is both of practical and theoretical interest. On the practical side, we have used the logic, and the associated approach to model-checking via reachability testing it supports, in the specification and verification in Uppaal of a collision avoidance protocol. On the theoretical side, we show that the logic is powerful enough to permit the definition of characteristic properties, with respect to a timed version ofthe ready simulation preorder, for nodes of deterministic, tau-free timed automata. This allows one to compute behavioural relations via our model-checking technique, therefore effectively reducing the problem of checking the existence of a behavioural relation among states of a timed automaton to a reachability problem

    Specification and Verification of Media Constraints using UPPAAL

    Get PDF
    We present the formal specification and verification of a multimedia stream. The stream is described in a timed automata notation. We verify that the stream satisfies certain quality of service properties, in particular, throughput and end-to-end latency. The verification tool used is the real-time model checker UPPAAL

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Model checking timed safety instrumented systems

    Get PDF
    Defects in safety-critical software systems can cause large economical and other losses. Often these systems are far too complex to be tested extensively. In this work a formal verification technique called model checking is utilized. In the technique, a mathematical model is created that captures the essential behaviour of the system. The specifications of the system are stated in some formal language, usually temporal logic. The behaviour of the model can then be checked exhaustively against a given specification. This report studies the Falcon arc protection system engineered by UTU Oy, which is controlled by a single programmable logic controller (PLC). Two separate models of the arc protection system are created. Both models consist of a network of timed automata. In the first model, the controller operates in discrete time steps at a specific rate. In the second model, the controller operates at varying frequency in continuous time. Five system specifications were formulated in timed computation tree logic (TCTL). Using the model checking tool Uppaal both models were verified against all five specifications. The processing times of the verification are measured and presented. The discrete-time model has to be abstracted a lot before it can be verified in a reasonable time. The continuous-time model, however, covered more behaviour than the system to be modelled, and could still be verified in a moderate time period. In that sense, the continuous-time model is better than the discrete-time model. The main contributions of this report are the model checking of a safety instrumented system controlled by a PLC, and the techniques used to describe various TCTL specifications in Uppaal. The conclusion of the work is that model checking of timed systems can be used in the verification of safety instrumented systems

    A Process Algebra for Link Layer Protocols

    Get PDF
    We propose a process algebra for link layer protocols, featuring a unique mechanism for modelling frame collisions. We also formalise suitable liveness properties for link layer protocols specified in this framework. To show applicability we model and analyse two versions of the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Our analysis confirms the hidden station problem for the version without virtual carrier sensing. However, we show that the version with virtual carrier sensing not only overcomes this problem, but also the exposed station problem with probability 1. Yet the protocol cannot guarantee packet delivery, not even with probability 1

    Utilization of timed automata as a verification tool for real-time security protocols

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 85-92)Text in English; Abstract: Turkish and Englishxi, 92 leavesTimed Automata is an extension to the automata-theoretic approach to the modeling of real time systems that introduces time into the classical automata. Since it has been first proposed by Alur and Dill in the early nineties, it has become an important research area and been widely studied in both the context of formal languages and modeling and verification of real time systems. Timed automata use dense time modeling, allowing efficient model checking of time-sensitive systems whose correct functioning depend on the timing properties. One of these application areas is the verification of security protocols. This thesis aims to study the timed automata model and utilize it as a verification tool for security protocols. As a case study, the Neuman-Stubblebine Repeated Authentication Protocol is modeled and verified employing the time-sensitive properties in the model. The flaws of the protocol are analyzed and it is commented on the benefits and challenges of the model
    corecore