129,886 research outputs found

    A two level feedback system design to provide regulation reserve

    Get PDF
    Demand side management has gained increasing importance as the penetration of renewable energy grows. Based on a Markov jump process modelling of a group of thermostatic loads, this paper proposes a two level feedback system design be- tween the independent system operator (ISO) and the regulation service provider such that two objectives are achieved: (1) the ISO can optimally dispatch regulation signals to multiple providers in real time in order to reduce the requirement for expensive spinning reserves, and (2) each regulation provider can control its thermostatic loads to respond the ISO signal. It is also shown that the amount of regulation service that can be provided is implicitly restricted by a few fundamental parameters of the provider itself, such as the allowable set point choice and its thermal constant. An interesting finding is that the regulation provider’s ability to provide a large amount of long term accumulated regulation and short term signal tracking restrict each other. Simulation results are presented to verify and illustrate the performance of the proposed framework

    Fairness in nurse rostering

    Get PDF

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    Normalized analysis and design of LCC resonant converters

    Get PDF
    Abstract—A normalization of the LCC voltage-output resonant converter performance characteristics, in terms of the tank gain at resonance and the parallel-to-series-capacitor ratio, is presented. The resulting description is subsequently used for the derivation of a design procedure that incorporates the effects of diode losses and the finite charge/discharge time of the parallel capacitor. Unlike previously reported techniques, the resulting normalized behavior of the converter is used to identify design regions to facilitate a reduction in component electrical stresses, and the use of harmonics to transfer real power. Consideration of the use of preferred component values is also given. The underlying methodology is ultimately suitable for incorporation into a software suite for use as part of a rapid interactive design tool. Both simulation results and experimental measurements from a prototype converter are included to demonstrate the attributes of the proposed analysis and design methodologies

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Generalized enthalpy model of a high pressure shift freezing process

    Get PDF
    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature

    The Butterfly Effect: Creative Sustainable Design Solutions through Systems thinking

    Get PDF
    FAIM: Intelligent Manufacturing now, Limerick, Irelan

    Decision-based genetic algorithms for solving multi-period project scheduling with dynamically experienced workforce

    Get PDF
    The importance of the flexibility of resources increased rapidly with the turbulent changes in the industrial context, to meet the customers’ requirements. Among all resources, the most important and considered as the hardest to manage are human resources, in reasons of availability and/or conventions. In this article, we present an approach to solve project scheduling with multi-period human resources allocation taking into account two flexibility levers. The first is the annual hours and working time regulation, and the second is the actors’ multi-skills. The productivity of each operator was considered as dynamic, developing or degrading depending on the prior allocation decisions. The solving approach mainly uses decision-based genetic algorithms, in which, chromosomes don’t represent directly the problem solution; they simply present three decisions: tasks’ priorities for execution, actors’ priorities for carrying out these tasks, and finally the priority of working time strategy that can be considered during the specified working period. Also the principle of critical skill was taken into account. Based on these decisions and during a serial scheduling generating scheme, one can in a sequential manner introduce the project scheduling and the corresponding workforce allocations
    corecore