76 research outputs found

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Optimising Structured P2P Networks for Complex Queries

    Get PDF
    With network enabled consumer devices becoming increasingly popular, the number of connected devices and available services is growing considerably - with the number of connected devices es- timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment it is important that users have a comprehensive, yet efficient, mechanism to discover services. Many existing wide-area service discovery mechanisms are centralised and do not scale to large numbers of users. Additionally, centralised services suffer from issues such as a single point of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a Peer to Peer (P2P) approach. Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier of entry, and ability to self manage. They can be used to provide not just a platform on which peers can offer and consume services, but also as a means for users to discover such services. Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent years many P2P systems have been proposed providing support for a sub-set of complex query types, such as keyword search, range queries, and semantic search. This Thesis presents a novel algorithm for performing any type of complex query, from keyword search, to complex regular expressions, to full-text search, over any structured P2P overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to process the query locally, and then efficiently routing responses back to the originating peer. Through experimentation, this technique is shown to be successful when the network is stable, however performance degrades under high levels of network churn. To address the issue of network churn, this Thesis proposes a number of enhancements which can be made to existing P2P overlays in order to improve the performance of both the existing DHT and the proposed algorithm. Through two case studies these enhancements are shown to improve not only the performance of the proposed algorithm under churn, but also the performance of traditional lookup operations in these networks

    An evaluation of EpiChord in OverSim

    Get PDF
    EpiChord is a Distributed Hash Table (DHT) algorithm which supports data storage/retrieval in large scale distributed systems. It removes the typicalO(logn)-state-per-node restriction imposed by the majority of other DHT topologies by employing a reactive routing state maintenance strategy that amortizes network maintenance costs into lookup queries. Under ideal condition, EpiChord’s lookup performance can approach O(1) hops – with maintenance costs comparable to traditional multi-hop DHTs. This paper presents an implementation of EpiChord in OverSim, and validates the performance of our model against the performance reported in the original EpiChord paper. We also present some adjustments to the algorithm to remove a discrepancy and then compare our modified results with the original ones. Finally, we present additional results showing the EpiChord algorithm is stable over time and performs well for larger networks

    Routing performance of structured overlay in Distributed Hash Tables (DHT) for P2P

    Get PDF
    This paper presents a routing performance analysis of structured P2P overlay network. Due to the rapid development and hectic life, sharing data wirelessly is essential. P2P allows participating peers move freely by joining and leaving the network at any convenience time. Therefore, it exists constraint when one measuring the network performance. Moreover, the design of structured overlay networks is fragmented and with various design. P2P networks need to have a reliable routing protocol. In order to analyse the routing performance, this work simulates three structured overlay protocols-Chord, Pastry and Kademlia using OMNeT++ with INET and OverSim module. The result shows that Pastry is the best among others with 100% routing efficiency. However, Kademlia leads with 12.76% and 18.78% better than Chord and Pastry in lookup hop count and lookup success latency respectively. Hence, Pastry and Kamelia architectures will have a better choice for implementing structured overlay P2P network

    Structured Peer-to-Peer Overlays for NATed Churn Intensive Networks

    Get PDF
    The wide-spread coverage and ubiquitous presence of mobile networks has propelled the usage and adoption of mobile phones to an unprecedented level around the globe. The computing capabilities of these mobile phones have improved considerably, supporting a vast range of third party applications. Simultaneously, Peer-to-Peer (P2P) overlay networks have experienced a tremendous growth in terms of usage as well as popularity in recent years particularly in fixed wired networks. In particular, Distributed Hash Table (DHT) based Structured P2P overlay networks offer major advantages to users of mobile devices and networks such as scalable, fault tolerant and self-managing infrastructure which does not exhibit single points of failure. Integrating P2P overlays on the mobile network seems a logical progression; considering the popularities of both technologies. However, it imposes several challenges that need to be handled, such as the limited hardware capabilities of mobile phones and churn (i.e. the frequent join and leave of nodes within a network) intensive mobile networks offering limited yet expensive bandwidth availability. This thesis investigates the feasibility of extending P2P to mobile networks so that users can take advantage of both these technologies: P2P and mobile networks. This thesis utilises OverSim, a P2P simulator, to experiment with the performance of various P2P overlays, considering high churn and bandwidth consumption which are the two most crucial constraints of mobile networks. The experiment results show that Kademlia and EpiChord are the two most appropriate P2P overlays that could be implemented in mobile networks. Furthermore, Network Address Translation (NAT) is a major barrier to the adoption of P2P overlays in mobile networks. Integrating NAT traversal approaches with P2P overlays is a crucial step for P2P overlays to operate successfully on mobile networks. This thesis presents a general approach of NAT traversal for ring based overlays without the use of a single dedicated server which is then implemented in OverSim. Several experiments have been performed under NATs to determine the suitability of the chosen P2P overlays under NATed environments. The results show that the performance of these overlays is comparable in terms of successful lookups in both NATed and non-NATed environments; with Kademlia and EpiChord exhibiting the best performance. The presence of NATs and also the level of churn in a network influence the routing techniques used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions posed by NATs but not very robust in high churn environments, whereas iterative routing is more suitable to high churn networks, but difficult to use in NATed environments. Kademlia supports both these routing schemes whereas EpiChord only supports the iterating routing. This undermines the usefulness of EpiChord in NATed environments. In order to harness the advantages of both routing schemes, this thesis presents an adaptive routing scheme, called Churn Aware Routing Protocol (ChARP), combining recursive and iterative lookups where nodes can switch between recursive and iterative routing depending on their lifetimes. The proposed approach has been implemented in OverSim and several experiments have been carried out. The experiment results indicate an improved performance which in turn validates the applicability and suitability of ChARP in NATed environments

    Hybrid Multicasting Using Automatic Multicast Tunnels (AMT)

    Get PDF
    Native Multicast plays an important role in distributing and managing delivery of some of the most popular Internet applications, such as IPTV and media delivery. However, due to patchy support and the existence of multiple approaches for Native Multicast, the support for Native Multicast is fragmented into isolated areas termed Multicast Islands. This renders Native Multicast unfit to be used as an Internet wide application. Instead, Application Layer Multicast, which does not have such network requirements but is more expensive in terms of bandwidth and overhead, can be used to connect the native multicast islands. This thesis proposes Opportunistic Native Multicast (ONM) which employs Application LayerMulticast (ALM), on top of a DHT-based P2P overlay network, and AutomaticMulticast Tunnelling (AMT) to connect these islands. ALM will be used for discovery and initiating the AMT tunnels. The tunnels will encapsulate the traffic going between islands' Primary Nodes (PNs). AMT was used for its added benefits such as security and being better at traffic shaping and Quality Of Service (QoS). While different approaches for connecting multicast islands exists, the system proposed in the thesis was designed with the following characteristics in mind: scalability, availability, interoperability, self-adaptation and efficiency. Importantly, by utilising AMT tunnels, this approach has unique properties that improve network security and management

    Comparative analysis of routing techniques in chord overlay network

    Get PDF
    Overlay networks are not a new field or area of study. This domain of computing will someday drive P2P systems in various application areas such as block-chain, energy trading, video multicasting, and distributed file storage. This study highlights the two widely known methods of routing information employed in one of such overlay networks called chord. In this study, simulations of both routing modes (iterative and recursive) and their variations under no-churn (leaving and joining of nodes) and churn conditions was carried out. The routing parameter (successor list size) was varied for each of the routing techniques in a simulation study. The results obtained show that semi recursive routing gives a better routing performance under churn scenarios

    Comparative Analysis of P2P Architectures for Energy Trading and Sharing

    Get PDF
    Rising awareness and emergence of smart technologies have inspired new thinking in energy system management. Whilst integration of distributed energy resources in micro-grids (MGs) has become the technique of choice for consumers to generate their energy, it also provides a unique opportunity to explore energy trading and sharing amongst them. This paper investigates peer-to-peer (P2P) communication architectures for prosumers’ energy trading and sharing. The performances of common P2P protocols are evaluated under the stringent communication requirements of energy networks defined in IEEE 1547.3-2007. Simulation results show that the structured P2P protocol exhibits a reliability of 99.997% in peer discovery and message delivery whilst the unstructured P2P protocol yields 98%, both of which are consistent with the requirements of MG applications. These two architectures exhibit high scalability with a latency of 0.5 s at a relatively low bandwidth consumption, thus, showing promising potential in their adoption for prosumer to prosumer communication
    corecore