348 research outputs found

    Upgrading Pathways of Intelligent Manufacturing in China: Transitioning across Technological Paradigms

    Get PDF
    Intelligent technologies are leading to the next wave of industrial revolution in manufacturing. In developed economies, firms are embracing these advanced technologies following a sequential upgrading strategy—from digital manufacturing to smart manufacturing (digital-networked), and then to new-generation intelligent manufacturing paradigms. However, Chinese firms face a different scenario. On the one hand, they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies; thus, they may not follow an identical upgrading pathway. On the other hand, Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners; thus, the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging, if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies. This study addresses the following question by conducting multiple case studies: Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies? The data sources include semi-structured interviews and archival data. This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in non-consecutive ways. This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics; furthermore, this finding can be extended to other catching-up economies. This paper provides a strategic roadmap as an explanatory guide to manufacturing firms, policymakers, and investors.This research is supported by the National Natural Science Foundation of China (91646102, L1824039, L1724034, L1624045, and L1524015), the project of China’s Ministry of Education “Humanities and Social Sciences (Engineering and Technology Talent Cultivation)” (16JDGC011), CAE Advisory Project “Research on the strategy of Manufacturing Power towards 2035” (2019-ZD-9), the National Science and Technology Major Project “High-end Numerical Control and Fundamental Manufacturing Equipment” (2016ZX04005002), Beijing Natural Science Foundation Project (9182013), the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences an Technology Project (CKCEST-2019-2-13, CKCEST-2018-1-13, CKCEST-2017-1-10, and CKCEST-2015-4-2), the UK–China Industry Academia Partnership Programme (UK-CIAPP\260), as well as the Volvo-supported Green Economy and Sustainable Development Tsinghua University (20153000181) and Tsinghua Initiative Research Project (2016THZW)

    Simulation and Optimization of Wind Farm Operations under Stochastic Conditions

    Get PDF
    This dissertation develops a new methodology and associated solution tools to achieve optimal operations and maintenance strategies for wind turbines, helping reduce operational costs and enhance the marketability of wind generation. The integrated framework proposed includes two optimization models for enabling decision support capability, and one discrete event-based simulation model that characterizes the dynamic operations of wind power systems. The problems in the optimization models are formulated as a partially observed Markov decision process to determine an optimal action based on a wind turbine's health status and the stochastic weather conditions. The rst optimization model uses homogeneous parameters with an assumption of stationary weather characteristics over the decision horizon. We derive a set of closed-form expressions for the optimal policy and explore the policy's monotonicity. The second model allows time-varying weather conditions and other practical aspects. Consequently, the resulting strategy are season-dependent. The model is solved using a backward dynamic programming method. The bene ts of the optimal policy are highlighted via a case study that is based upon eld data from the literature and industry. We nd that the optimal policy provides options for cost-e ective actions, because it can be adapted to a variety of operating conditions. Our discrete event-based simulation model incorporates critical components, such as a wind turbine degradation model, power generation model, wind speed model, and maintenance model. We provide practical insights gained by examining di erent maintenance strategies. To the best of our knowledge, our simulation model is the rst discrete-event simulation model for wind farm operations. Last, we present the integration framework, which incorporates the optimization results in the simulation model. Preliminary results reveal that the integrated model has the potential to provide practical guidelines that can reduce the operation costs as well as enhance the marketability of wind energy

    Using precision livestock farming (PLF) technologies to assess the impact of environmental stressors on animal welfare and production efficiency on modern dairy farms

    Get PDF
    In modern dairy farming systems, heat stress is still a significant challenge. Dairy cows will encounter sub-optimal welfare which can result in production decline, diseases and even mortality, especially for high-producing cows with lower heat tolerance. The frequency and magnitude of heat stress events or heat waves are predicted to keep increasing in coming decades associated with global warming. Therefore, greater attention is being paid to alleviating the effects of heat stress on dairy cows and livestock generally. Modelling and on-farm experiments have been undertaken in many countries to assess the influence of heat stress on livestock using modern computer technologies and other hi-tech tools. At the same time, mitigation approaches such as optimal shed structure, new cooling facilities, targeted feeding regimes, improved farm management and genetic selection have all been studied extensively. However, due to differences between farm conditions and varying heat tolerance of different breeds and coping ability, the results from different heat stress models provided a variety of thresholds for on-farm decision support. Therefore, determination of accurate heat stress thresholds to facilitate practical mitigation options are still difficult. This study was initiated by summarizing the progresses achieved by previous studies on intensively kept dairy cows in relation to measuring, assessing and mitigating their heat stress. By taking comparative analysis of the published studies about thermal indices, animal responses and mitigation solutions, a range of recommendations were given for developing more accurate assessment and designing of more effective mitigation options. The review suggested that for achieving accurate and applicable thresholds of heat stress, it is necessary to establish monitoring systems embedded into routine farm management systems, which can be an add-on unit of current robotic milking system (RMS). The robust monitoring system would measure real-time data from the ambient environment, animal responses, as well as the operation pattern of mitigations. Furthermore, by facilitating big-data analysis techniques to be used on individual farms, (or for individual animal) it might be possible to implement self-calibration procedure for the assessment, thresholds and control algorithms responding to varied cow’s production status, farm management factors and local climate changes. The follow-up research presented in this thesis demonstrated the possibility of establishing more accurate heat stress threshold by taking advantage of the routinely collected datasets on robotic dairy farms and local weather stations. The dairy farm observed in this study situated in a subtropical climate region, held around 150 lactating cows and applied RMS with semi-free traffic. The farm management system recorded specific production, health and behaviour information of each individual animal over 5-year period (2013-2017), which was utilized for the analysis in this study. The historical climate conditions were measured by local weather station with dataset accessible on a government website, which provided the data of daily thermal parameters for this research. Furthermore, data-loggers were also positioned on farm from April 2016 to November 2017 to measure thermal parameters hourly. By using the collected information, this study compared the performance of published thermal comfort indices (TCIs) as the indicators of cows’ responses to heat stress. These TCIs included temperature humidity index (THI), black globe humidity index (BGHI), environmental stress index (ESI), equivalent temperature index (ETI), heat load index (HLI), respiration rate index (RR) and comprehensive climate index (CCI). The comparison also included the basic thermal parameters: dry bulb temperature (Tdb), relative humidity (RH), wet bulb temperature (Twb) and dew point temperature (Tdp). The strength of their correlation with daily milk yield (DMY) and milk temperature (MT) was tested statistically. The regression analysis using climate dataset from local weather station and on-farm data-loggers were also compared to validate the accuracy of online data source. The statistical analysis found similar performance between TCIs and Tdb. It was also found that the inaccuracy of online data source, due to spatial variability between on-farm measurement and local weather station, could be neglected when modelling the association between TCIs and MT. A general threshold with significant decline of DMY was identified as THI>64 for cows with DMY around 31 kg/cow/day. As Tdb can provide sufficient accuracy in the prediction of heat stress, the dynamic thresholds of daily minimum and mean temperature (Tmin and Tmean) were then established using individual information of 126 cows. The dataset was grouped according to the age, body weight (BW) and days in milk (DIM) of cows. Specific thresholds for different groups were identified using single broke-line regression between temperature and DMY or MT. Machine learning model was applied to transform these thresholds of different group into a decision tree of dynamic thresholds, which achieved overall 94% accuracy with the thresholds of Tmin, and 79% accuracy with the thresholds of Tmean. Moreover, for the whole herd, multiple broken-line regression was applied, which established four stages of heat stress including as thermal comfort stage (Tmin 14 oC, Tmean > 16 oC) based on the change of DMY and MT. To gain more understanding of the heat stress influence on animal behaviours in RMS, extra dependent variables were imported into new models involving rumination time (RT), time of milking (TM), miking frequency (MF), milking duration (MD), milking speed (MS), and milk yield per milking (MY). A new index – rumination efficiency index (REI) was created to evaluate the efficiency of rumination. According to the multiple broken-line regression, 5 minutes reduction of RT, 0.08 kg/cow/hour reduction of REI and 1% increase of low efficiency miking (LEM) were found to be associated with raising 1 oC of Tmean. It was also demonstrated that cows could not adjust their pattern of milking behaviour (e.g. visiting time pattern) coping with heat stress. Statistically, 86% of their milking event happened between 07:00 AM and 09:00 AM. However, REI and RMS performance can be improved by adjusting the pattern of milking behaviour such as milking interval (MI). The financial comparison between current pattern and adjusted pattern estimated that nearly $400 daily benefit could be gained. In addition, this study also analysed the cumulative and lag effect of heat stress which were time-related. For the short-term effect, an intensity duration index (IDI) was defined by multiplying the mean temperature of the heat stress period with the duration of the period. Multiple levels of heat stress were then identified by IDI with different decline rate of DMY from -0.01 to -0.13 kg/cow/IDI. For long-term heat stress, the lag and cumulative effect was demonstrated by the negative correlation between the duration of heat stress during dry-off period and the production performance of the subsequent lactation period. The lag effect was found to be 3-4 days, while the cumulative effect could last for about 2 months. The regression between DMY and the average temperature of the period with heat stress during the 2 months before test day (HSmean) was found to perform stronger correlation (R2 equals 0.73-0.77) than the regression between DMY and same day’s temperature (R2 equals 0.65-0.68)

    Holistic framework for land settlement development project sustainability assessment : comparison of El Hierro Island hydro wind project and Sivens dam project

    Get PDF
    Project developer in the domain of land settlement project are involved with many stakeholders and are usually overflown by data relative to technical, economic and social issues. This paper contributes to the necessary multi-scale approach challenge and we propose a holistic framework that enables to describe the development process of land settlement project and assess its sustainability. It would help developers to take decisions compliant with the project complexity. In the model driven engineering perspective, the metamodel framework is described with the ISO 19440 four views to represent complex systems: architectural, structural, functional and behavioural. We confront it to describe two case studies: the successful project of hydro-wind power plant in El Hierro in the Canaries, and the Sivens Dam project in France sadly famous for its deadly outcome. Their comparison enables us to draw hypothesis on what are the ingredients of success and validate the framework

    Business Intelligence in the Vineyard

    Get PDF
    The evolution that is nowadays taking place in the information and communication fields, namely in mobile computing and remote monitoring, constitutes a very interesting challenge to the agricultural sector. This reality places agronomic knowledge in centre stage as these technologies are dramatically improving data collection and storage capacities, challenging the farmers and the agricultural field experts to develop processes that efficiently transform data into information and knowledge and are able to support the everyday decision making at farm level. In this work we will present a demonstration project under way in a vineyard in Portugal where we are exploring the potential of the most recent technological innovations available in the market to build the i-Farm, the information and knowledge society intelligent farm. i-Farm (intelligent farm) applies at farm level the potential offered by using in an integrated way mobile solutions, sensor networks, wireless communication and digital imagery materialized in a information system that supports farmer real time decision making in the field and in the office. The i-Farm project creates a unique knowledge repository containing information from multiple sources (crop, environment, soil, operations, market, etc.) enabling accurate and timely decisions. For the project development a Business Intelligence approach is used. In the context of this paper this broad term is used to refer to the process of aggregating, processing and building rich and relevant information which is made available dynamically in real time to managers in an interactive way to support decisions and planning activitiesinfo:eu-repo/semantics/publishedVersio

    Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts

    Get PDF
    [EN] In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare. Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated. The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments. The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended.This research has been supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE) (grant nos. 2814ERA02C and 2814ERA03C), the Instituto Nacional de Investigacion Tecnologia Agraria y Alimentaria (INIA) (grant no. 618105), the Basque Government (grant no. BERC 2018-2021), the Spanish Ministry of Economy, Industry and Competitiveness MINECO (grant nos. MDM-2017-0714, FJCI-2016-30263, and RYC-2017-22143), and the Innovation Foundation Denmark (grant no. 4215-00004B).Hempel, S.; Menz, C.; Pinto, S.; Galán, E.; Janke, D.; Estellés, F.; Müschner-Siemens, T.... (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts. Earth System Dynamics. 10(4):859-884. https://doi.org/10.5194/esd-10-859-2019S859884104Acatincăi, S., Gavojdian, D., Stanciu, G., Cziszter, L. T., Tripon, I., and Baul, S.: Study Regarding Rumination Behavior in Cattle–Position Adopted by Cows During Rumination Process, Scientific Papers Animal Science and Biotechnologies, 43, 199–202, 2010. aAllen, J., Anderson, S., Collier, R., and Smith, J.: Managing heat stress and its impact on cow behavior, in: 28th Annual Southwest Nutrition and Management Conference, 6–8 March 2013, Reno, Nevada, USA, 2013. aAllen, J., Hall, L., Collier, R., and Smith, J.: Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress, J. Dairy Sci., 98, 118–127, 2015. a, bAmon, B., Kryvoruchko, V., Fröhlich, M., Amon, T., Pöllinger, A., Mösenbacher, I., and Hausleitner, A.: Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: Housing and manure storage, Livest. Sci., 112, 199–207, 2007. aAnderson, S., Bradford, B., Harner, J., Tucker, C., Choi, C., Allen, J., Hall, L., Rungruang, S., Collier, R., and Smith, J.: Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate, J. Dairy Sci., 96, 4738–4750, 2013. a, bAngrecka, S. and Herbut, P.: Conditions for cold stress development in dairy cattle kept in free stall barn during severe frosts, Czech J. Anim. Sci., 60, 81–87, https://doi.org/10.17221/7978-CJAS, 2015. aBailey, K., Jones, C., and Heinrichs, A.: Economic returns to Holstein and Jersey herds under multiple component pricing, J. Dairy Sci., 88, 2269–2280, 2005. aBerman, A.: Estimates of heat stress relief needs for Holstein dairy cows 1, J. Anim. Sci., 83, 1377–1384, 2005. aBerman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., and Graber, Y.: Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate, J. Dairy Sci., 68, 1488–1495, 1985. aBernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., and Nardone, A.: The effects of heat stress in Italian Holstein dairy cattle, J. Dairy Sci., 97, 471–486, 2014. a, bBianca, W.: Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle, Nature, 195, 251–252, 1962. aBohmanova, J., Misztal, I., and Cole, J.: Temperature-humidity indices as indicators of milk production losses due to heat stress, J. Dairy Sci., 90, 1947–1956, 2007. a, b, c, dBouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., and Belyea, R.: The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate, Anim. Res., 51, 479–491, 2002. a, bBroucek, J.: Production of methane emissions from ruminant husbandry: a review, J. Environ. Prot., 5, 1482–1493, https://doi.org/10.4236/jep.2014.515141, 2014. aBrouček, J., Letkovičová, M., and Kovalčuj, K.: Estimation of cold stress effect on dairy cows, Int. J. Biometeorol., 35, 29–32, 1991. aBroucek, J., Ryba, S., Mihina, S., Uhrincat, M., and Kisac, P.: Impact of thermal-humidity index on milk yield under conditions of different dairy management, J. Anim. Feed Sci., 16, 329–344, https://doi.org/10.22358/jafs/66755/2007, 2007. a, bBrown-Brandl, T., Eigenberg, R., Nienaber, J., and Hahn, G. L.: Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, Part 1: Analyses of indicators, Biosyst. Eng., 90, 451–462, 2005. aBrügemann, K., Gernand, E., König von Borstel, U., and König, S.: Defining and evaluating heat stress thresholds in different dairy cow production systems, Arch. Anim. Breed., 55, 13–24, 2012. aCannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. aCarabano, M.-J., Logar, B., Bormann, J., Minet, J., Vanrobays, M.-L., Diaz, C., Tychon, B., Gengler, N., and Hammami, H.: Modeling heat stress under different environmental conditions, J. Dairy Sci., 99, 3798–3814, 2016. a, b, cChristensen, J., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional Climate Projections, in: IPCC Climate Change 2007: The Physical Science Basis, edited by: Solomon, S., Qin, D., Manning, M., Hen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007. aCollier, R. J., Hall, L. W., Rungruang, S., and Zimbleman, R. B.: Quantifying heat stress and its impact on metabolism and performance, Proc. Florida Ruminant Nutrition Symp, Department of Animal Sciences, University of Arizona, Gainesville, USA, p. 68, 2012. a, b, cCook, N., Mentink, R., Bennett, T., and Burgi, K.: The effect of heat stress and lameness on time budgets of lactating dairy cows, J. Dairy Sci., 90, 1674–1682, 2007. a, bCurtis, A., Scharf, B., Eichen, P., and Spiers, D.: Relationships between ambient conditions, thermal status, and feed intake of cattle during summer heat stress with access to shade, J. Therm. Biol., 63, 104–111, 2017. ada Costa, A. N. L., Feitosa, J. V., Montezuma, P. A., de Souza, P. T., and de Araújo, A. A.: Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil, Int. J. Biometeorol., 59, 1647–1653, 2015. a, bDa Silva, R. G., Maia, A. S. C., and de Macedo Costa, L. L.: Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments, Int. J. Biometeorol., 59, 551–559, 2015. aDavison, T., Jonsson, N., Mayer, D., Gaughan, J., Ehrlich, W., and McGowan, M.: Comparison of the impact of six heat-load management strategies on thermal responses and milk production of feed-pad and pasture fed dairy cows in a subtropical environment, Int. J. Biometeorol., 60, 1961–1968, 2016. aDel Prado A., Scholefield D., Chadwick D., Misselbrook T., Haygarth P., Hopkins A., Dewhurst R., Jones R., Moorby J., Davison P., Lord E., Turner M., Aikman P., and Schröder J.: A modelling framework to identify new integrated dairy production systems, in: 21st General Meeting of the European Grassland Federation (EGF), 3–6 April 2006, Badajoz, Spain, 766–768, 2006. aDe Rensis, F. and Scaramuzzi, R. J.: Heat stress and seasonal effects on reproduction in the dairy cow – a review, Theriogenology, 60, 1139–1151, 2003. aDe Rensis, F., Garcia-Ispierto, I., and López-Gatius, F.: Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows, Theriogenology, 84, 659–666, 2015. aDiepen, C. v., Wolf, J., Keulen, H. V., and Rappoldt, C.: WOFOST: a simulation model of crop production, Soil Use Manage., 5, 16–24, 1989. aDikmen, S. and Hansen, P.: Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?, J. Dairy Sci., 92, 109–116, 2009. a, bDirksen, G., Gründer, H., Grunert, E., Krause, D., and Stöber, M.: Clinical examination of cattle, 3rd edn., Verlag Paul Parey, Berlin, Germany, 1990. aDosio, A.: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models, J. Geophys. Res.-Atmos., 121, 5488–5511, 2016. aEfron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979. aEfron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Stat. Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986. aEuropean Commission – EU FADN: EU Dairy Farms Report Based on 2016 FADN Data, avaialble at: https://ec.europa.eu/agriculture/fadn_en (last access: 11 April 2019), 2018. aFiedler, A., Fischer, J., Hempel, S., Saha, C., Loebsin, C., Berg, W., Amon, B., Brunsch, R., and Amon, T.: Flow fields within a dairy barn – Measurements, physical modelling and numerical simulation, in: Proceedings of the International Conference of Agricultural Engineering AgEng, 6–10 July 2014, Zürich, Switzerland, 1–5, 2014. a, bFood and Agriculture Organization of the United Nations (FAO): The Impact of Disasters on Agriculture – Assessing the information gap, available at: http://www.fao.org/3/a-i7279e.pdf (last access: 10 September 2018), 2017. aFord, B.: An Overview of Hot-Deck Procedures, in: Incomplete Data in Sample Surveys: Theory and Bibliographies, edited by: Madow, W., Olkin, I., and Rubin, D., Academic Press, New York, USA, 1983. aFournel, S., Ouellet, V., and Charbonneau, É.: Practices for alleviating heat stress of dairy cows in humid continental climates: a literature review, Animals, 7, 37, https://doi.org/10.3390/ani7050037, 2017. aGalán, E., Llonch, P., Villagrá, A., Levit, H., Pinto, S., and del Prado, A.: A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle, PloS one, 13, e0206520, https://doi.org/10.1371/journal.pone.0206520, 2018. a, b, c, dGaughan, J., Mader, T. L., Holt, S., and Lisle, A.: A new heat load index for feedlot cattle, J. Anim. Sci., 86, 226–234, 2008. aGebremedhin, K. and Wu, B.: Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions, J. Therm. Biol., 30, 343–353, 2005. aGiorgi, F. and Gutowski Jr., W. J.: Regional dynamical downscaling and the CORDEX initiative, Annu. Rev. Env. Resour., 40, 467–490, 2015. aGroenestein, C., Hutchings, N., Haenel, H., Amon, B., Menzi, H., Mikkelsen, M., Misselbrook, T., van Bruggen, C., Kupper, T., and Webb, J.: Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe, J. Clean. Prod., 211, 1162–1170, 2019. aGurney, K.: An Introduction to Neural Networks, UCL Press Limited an imprint of Taylor & Francis group, London, UK, 1997. aHahn, G.: Dynamic responses of cattle to thermal heat loads, J. Anim. Sci., 77, 10–20, 1999. aHammami, H., Carabaño, M.-J., Logar, B., Vanrobays, M.-L., and Gengler, N.: Genotype x Climate interactions for protein yield using four European Holstein Populations, in: Proceedings of 10th World Congress of Genetics Applied to Livestock Production, 17–22 August 2014, Vancouver, Canada, 2014. aHeaton, J.: Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks, Artificial Intelligence for Humans Series, CreateSpace Independent Publishing Platform, Heaton Research, Inc., Chesterfield, USA, 2015. aHeinicke, J., Hoffmann, G., Ammon, C., Amon, B., and Amon, T.: Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows, J. Therm. Biol., 77, 67–74, 2018. a, b, c, dHeinicke, J., Ibscher, S., Belik, V., and Amon, T.: Cow individual activity response to the accumulation of heat load duration, J. Therm. Biol., 82, 23–32, https://doi.org/10.1016/j.jtherbio.2019.03.011, 2019. aHempel, S. and Menz, C.: Indoor climate projections for European cattle barns, Mendeley Data, v1, https://doi.org/10.17632/tjp8h523p7.1, 2019. aHempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. aHempel, S., Wiedemann, L amd Ammon, C., Fiedler, A., Saha, C.and Janke, D. L. C., Fischer, J., Amon, B., Hoffmann, G., Menz, C., Zhang, G., Halachmi, I., Del Prado, A., Estelles, F., Berg, W., Brunsch, R., and Amon, T.: Determine the flow characteristics of naturally ventilated dairy barns to optimize barn climate, in: 12. Tagung: Bau, Technik und Umwelt 2015 in der landwirtschaftlichen Nutztierhaltung, 8–10 September, 2015, KTBL, Darmstadt, Germany, 346–351, 2015a. aHempel, S., Wiedemann, L., Ammon, C., Fiedler, M., Saha, C., Loebsin, C., Fischer, J., Berg, W., Brunsch, R., and Amon, T.: Assessment of the through-flow patterns in naturally ventilated dairy barns – Three methods, one complex approach, in: RAMIRAN 2015 – Rural-Urban Symbiosis, edited by: Körner, I., TC-O_16, TUTech Verlag, Hamburg, Germany, Hamburg University of Technology, Germany, 356–359, e-book, 2015b. aHempel, S., Janke, D., König, M., Menz, C., Englisch, A., Pinto, S., Sibony, V., Halachmi, I., Rong, L., Zong, C., Zhang, G., Sanchis, E., Estelle, F., Calvet, S., Galan, E., del Prado, A., Ammon, C., Amon, B., and Amon, T.: Integrated modelling to assess optimisation potentials for cattle housing climate, Advances in Animal Biosciences, 7, 261–262, https://doi.org/10.1017/S2040470016000352, 2016a. a, bHempel, S., Saha, C. K., Fiedler, M., Berg, W., Hansen, C., Amon, B., and Amon, T.: Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn, Biosyst. Eng., 145, 10–21, 2016b. a, b, c, dHempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on FACCE-JPI valorisation meeting, available at: https://www.faccejpi.com/content/download/5161/48933/version/1/file/FACCE-JPI_Synthesis-valorisation-survey-results-FINAL.pdf (last access: 11 April 2019), 2017a. aHempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on ERANET+ mid-term meeting, available at: https://www.faccejpi.com/content/download/5163/48955/version/2/file/Projects+booklet_updated+08+May+2017.pdf (last access: 11 April 2019), 2017b. aHempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on ERANET+ mid-term meeting, available at: https://www.faccejpi.com/content/download/5295/50720/version/1/file/OptiBarn_presentation_ERA_NET+final+meeting+March18[1].pdf (last access: 11 April 2019), 2017c. aHempel, S., König, M., Menz, C., Janke, D., Amon, B., Banhazi, T. M., Estellés, F., and Amon, T.: Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability, Biosyst. Eng., 166, 58–75, 2018. a, b, c, dHerbut, P. and Angrecka, S.: Relationship between THI level and dairy cows’ behaviour during summer period, Ital. J. Anim. Sci., 17, 226–233, 2018. aHerbut, P., Angrecka, S., Nawalany, G., and Adamczyk, K.: Spatial and temporal distribution of temperature, relative humidity and air velocity in a parallel milking parlour during summer period, Ann. Anim. Sci., 15, 517–526, 2015. aHoffmann, I.: Climate change and the characterization, breeding and conservation of animal genetic resources, Anim. Genet., 41, 32–46, 2010. aHonig, H., Miron, J., Lehrer, H., Jackoby, S., Zachut, M., Zinou, A., Portnick, Y., and Moallem, U.: Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under hot and humid climate, J. Dairy Sci., 95, 3736–3742, 2012. a, b, c, dHübener, H., Bülow, K., Fooken, C., Früh, B., Hoffmann, P., Höpp, S., Keuler, K., Menz, C., Mohr, V., Radtke, K., Ramthun, H., Spekat, A., Steger, C., Toussaint, F., Warrach-Sagi, K., and Woldt, M.: ReKliEs-De Ergebnisbericht, Tech. rep., World Data Center for Climate (WDCC) at DKRZ, Hamburg, Germany, https://doi.org/10.2312/WDCC/ReKliEsDe_Ergebnisbericht, 2017. aHutchings, N., Sommer, S. G., and Jarvis, S.: A model of ammonia volatilization from a grazing livestock farm, Atmos. Environ., 30, 589–599, 1996. aJackson, P. and Cockcroft, P.: Clinical examination of farm animals, Wiley-Backwell, Hoboken, USA, 2008. aKadzere, C., Murphy, M., Silanikove, N., and Maltz, E.: Heat stress in lactating dairy cows: a review, Livest. Sci., 77, 59–91, 2002. a, b, c, d, eKafle, G. K., Joo, H., and Ndegwa, P. M.: Sampling Duration and Frequency for Determining Emission Rates from Naturally Ventilated Dairy Barns, T. ASABE, 61, 681–691, https://doi.org/10.13031/trans.12543, 2018. aKendall, P., Nielsen, P., Webster, J., Verkerk, G., Littlejohn, R., and Matthews, L.: The effects of providing shade to lactating dairy cows in a temperate climate, Livest. Sci., 103, 148–157, 2006. aKjellström, E., Nikulin, G., Strandberg, G., Christensen, O. B., Jacob, D., Keuler, K., Lenderink, G., van Meijgaard, E., Schär, C., Somot, S., Sørland, S. L., Teichmann, C., and Vautard, R.: European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models, Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, 2018. a, bKurukulasuriya, P. and Rosenthal, S.: Climate change and agriculture: A review of impacts and adaptations, Environment department papers, no. 91, Climate change series, World Bank, Washington, D.C., USA, 2013. aLees, J., Lees, A., and Gaughan, J.: Developing a heat load index for lactating dairy cows, Anim. Prod. Sci., 58, 1387–1391, https://doi.org/10.1071/AN17776, 2018. a, bLelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, 2015. aMader, T. L., Davis, M., and Brown-Brandl, T.: Environmental factors influencing heat stress in feedlot cattle, J. Anim. Sci., 84, 712–719, 2006. a, b, cMader, T. L., Johnson, L., and Gaughan, J.: A

    Dynamic variability support in context-aware workflow-based systems

    Get PDF
    Workflow-based systems are increasingly becomingmore complex and dynamic. Besides the large sets of process variants to be managed, process variants need to be context sensitive in order to accommodate new user requirements and intrinsic complexity. This paradigm shift forces us to defer decisions to run time where process variants must be customized and executed based on a recognized context. However, few efforts have been focused on dynamic variability for process families. This dissertation proposes an approach for variant-rich workflow-based systems that can comprise context data while deferring process configuration to run time. Whereas existing early process variability approaches, like Worklets, VxBPEL, or Provop handle run-time reconfiguration, ours lets us resolve variants at execution time and supports multiple binding required for dynamic environments. Finally, unlike the specialized reconfiguration solutions for some workflow-based systems, our approach allows an automated decision making, enabling different run-time resolution strategies that intermix constraint solving and feature models. We achieve these results through a simple extension to BPMN that adds primitives for process variability constructs. We show that this is enough to eficiently model process variability while preserving separation of concerns. We implemented our approach in the LateVa framework and evaluated it using both synthetic and realworld scenarios. LateVa achieves a reasonable performance over runtime resolution, which means that can facilitate practical adoption in context-aware and variant-rich work ow-based systems

    Acoustic Emission

    Get PDF
    Structural testing and assessment, process monitoring, and material characterization are three broad application areas of acoustic emission (AE) techniques. Quantitative and qualitative characteristics of AE waves have been studied widely in the literature. This book reviews major research developments in the application of AE in numerous engineering fields. It brings together important contributions from renowned international researchers to provide an excellent survey of new perspectives and paradigms of AE. In particular, this book presents applications of AE in cracking and damage assessment in metal beams, asphalt pavements, and composite materials as well as studying noise mitigation in wind turbines and cylindrical shells

    Energy Management Systems For Smart Active Residential Buildings

    Get PDF
    corecore