74,749 research outputs found

    Eco Global Evaluation: Cross Benefits of Economic and Ecological Evaluation

    Get PDF
    This paper highlights the complementarities of cost and environmental evaluation in a sustainable approach. Starting with the needs and limits for whole product lifecycle evaluation, this paper begins with the modeling, data capture and performance indicator aspects. In a second step, the information issue, regarding the whole lifecycle of the product is addressed. In order to go further than the economical evaluations/assessment, the value concept (for a product or a service) is discussed. Value could combine functional requirements, cost objectives and environmental impact. Finally, knowledge issues which address the complexity of integrating multi-disciplinary expertise to the whole lifecycle of a product are discussing.EcoSD NetworkEcoSD networ

    Challenges and progress on the modelling of entropy generation in porous media: a review

    Get PDF
    Depending upon the ultimate design, the use of porous media in thermal and chemical systems can provide significant operational advantages, including helping to maintain a uniform temperature distribution, increasing the heat transfer rate, controlling reaction rates, and improving heat flux absorption. For this reason, numerous experimental and numerical investigations have been performed on thermal and chemical systems that utilize various types of porous materials. Recently, previous thermal analyses of porous materials embedded in channels or cavities have been re-evaluated using a local thermal non-equilibrium (LTNE) modelling technique. Consequently, the second law analyses of these systems using the LTNE method have been a point of focus in a number of more recent investigations. This has resulted in a series of investigations in various porous systems, and comparisons of the results obtained from traditional local thermal equilibrium (LTE) and the more recent LTNE modelling approach. Moreover, the rapid development and deployment of micro-manufacturing techniques have resulted in an increase in manufacturing flexibility that has made the use of these materials much easier for many micro-thermal and chemical system applications, including emerging energy-related fields such as micro-reactors, micro-combustors, solar thermal collectors and many others. The result is a renewed interest in the thermal performance and the exergetic analysis of these porous thermochemical systems. This current investigation reviews the recent developments of the second law investigations and analyses in thermal and chemical problems in porous media. The effects of various parameters on the entropy generation in these systems are discussed, with particular attention given to the influence of local thermodynamic equilibrium and non-equilibrium upon the second law performance of these systems. This discussion is then followed by a review of the mathematical methods that have been used for simulations. Finally, conclusions and recommendations regarding the unexplored systems and the areas in the greatest need of further investigations are summarized

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation

    Get PDF
    Syngas and biochar are two main products from biomass gasification. To facilitate the optimization of the energy efficiency and economic viability of gasification systems, a comprehensive fixed-bed gasification model has been developed to predict the product rate and quality of both biochar and syngas. A coupled transient representative particle and fix-bed model was developed to describe the entire fixed-bed in the flow direction of primary air. A three-region approach has been incorporated into the model, which divided the reactor into three regions in terms of different fluid velocity profiles, i.e. natural convection region, mixed convection region, and forced convection region, respectively. The model could provide accurate predictions against experimental data with a deviation generally smaller than 10%. The model is applicable for efficient analysis of fixed-bed biomass gasification under variable operating conditions, such as equivalence ratio, moisture content of feedstock, and air inlet location. The optimal equivalence ratio was found to be 0.25 for maximizing the economic benefits of the gasification process
    • …
    corecore