748 research outputs found

    Adaptive traffic signal control using approximate dynamic programming

    Get PDF
    This thesis presents a study on an adaptive traffic signal controller for real-time operation. An approximate dynamic programming (ADP) algorithm is developed for controlling traffic signals at isolated intersection and in distributed traffic networks. This approach is derived from the premise that classic dynamic programming is computationally difficult to solve, and approximation is the second-best option for establishing sequential decision-making for complex process. The proposed ADP algorithm substantially reduces computational burden by using a linear approximation function to replace the exact value function of dynamic programming solution. Machine-learning techniques are used to improve the approximation progressively. Not knowing the ideal response for the approximation to learn from, we use the paradigm of unsupervised learning, and reinforcement learning in particular. Temporal-difference learning and perturbation learning are investigated as appropriate candidates in the family of unsupervised learning. We find in computer simulation that the proposed method achieves substantial reduction in vehicle delays in comparison with optimised fixed-time plans, and is competitive against other adaptive methods in computational efficiency and effectiveness in managing varying traffic. Our results show that substantial benefits can be gained by increasing the frequency at which the signal plans are revised. The proposed ADP algorithm is in compliance with a range of discrete systems of resolution from 0.5 to 5 seconds per temporal step. This study demonstrates the readiness of the proposed approach for real-time operations at isolated intersections and the potentials for distributed network control

    Adaptive traffic signal control using approximate dynamic programming

    Get PDF
    This paper presents a study on an adaptive traffic signal controller for real-time operation. The controller aims for three operational objectives: dynamic allocation of green time, automatic adjustment to control parameters, and fast revision of signal plans. The control algorithm is built on approximate dynamic programming (ADP). This approach substantially reduces computational burden by using an approximation to the value function of the dynamic programming and reinforcement learning to update the approximation. We investigate temporal-difference learning and perturbation learning as specific learning techniques for the ADP approach. We find in computer simulation that the ADP controllers achieve substantial reduction in vehicle delays in comparison with optimised fixed-time plans. Our results show that substantial benefits can be gained by increasing the frequency at which the signal plans are revised, which can be achieved conveniently using the ADP approach

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    New Perspectives on Modelling and Control for Next Generation Intelligent Transport Systems

    Get PDF
    This PhD thesis contains 3 major application areas all within an Intelligent Transportation System context. The first problem we discuss considers models that make beneficial use of the large amounts of data generated in the context of traffic systems. We use a Markov chain model to do this, where important data can be taken into account in an aggregate form. The Markovian model is simple and allows for fast computation, even on low end computers, while at the same time allowing meaningful insight into a variety of traffic system related issues. This allows us to both model and enable the control of aggregate, macroscopic features of traffic networks. We then discuss three application areas for this model: the modelling of congestion, emissions, and the dissipation of energy in electric vehicles. The second problem we discuss is the control of pollution emissions in eets of hybrid vehicles. We consider parallel hybrids that have two power units, an internal combustion engine and an electric motor. We propose a scheme in which we can in uence the mix of the two engines in each car based on simple broadcast signals from a central infrastructure. The infrastructure monitors pollution levels and can thus make the vehicles react to its changes. This leads to a context aware system that can be used to avoid pollution peaks, yet does not restrict drivers unnecessarily. In this context we also discuss technical constraints that have to be taken into account in the design of traffic control algorithms that are of a microscopic nature, i.e. they affect the operation of individual vehicles. We also investigate ideas on decentralised trading of emissions. The goal here is to allocate the rights to pollute fairly among the eet's vehicles. Lastly we discuss the usage of decentralised stochastic assignment strategies in traffic applications. Systems are considered in which reservation schemes can not reliably be provided or enforced and there is a signifficant delay between decisions and their effect. In particular, our approach facilitates taking into account the feedback induced into traffic systems by providing forecasts to large groups of users. This feedback can invalidate the predictions if not modelled carefully. At the same time our proposed strategies are simple rules that are easy to follow, easy to accept, and significantly improve the performance of the systems under study. We apply this approach to three application areas, the assignment of electric vehicles to charging stations, the assignment of vehicles to parking facilities, and the assignment of customers to bike sharing stations. All discussed approaches are analysed using mathematical tools and validated through extensive simulations

    Deep learning for real-time traffic signal control on urban networks

    Get PDF
    Real-time traffic signal controls are frequently challenged by (1) uncertain knowledge about the traffic states; (2) need for efficient computation to allow timely decisions; (3) multiple objectives such as traffic delays and vehicle emissions that are difficult to optimize; and (4) idealized assumptions about data completeness and quality that are often made in developing many theoretical signal control models. This thesis addresses these challenges by proposing two real-time signal control frameworks based on deep learning techniques, followed by extensive simulation tests that verifies their effectiveness in view of the aforementioned challenges. The first method, called the Nonlinear Decision Rule (NDR), defines a nonlinear mapping between network states and signal control parameters to network performances based on prevailing traffic conditions, and such a mapping is optimized via off-line simulation. The NDR is instantiated with two neural networks: feedforward neural network (FFNN) and recurrent neural network (RNN), which have different ways of processing traffic information in the near past. The NDR is implemented and tested within microscopic traffic simulation (S-Paramics) for a real-world network in West Glasgow, where the off-line training of the NDR amounts to a simulation-based optimization procedure aiming to reduce delay, CO2 and black carbon emissions. Extensive tests are performed to assess the NDR framework, not only in terms of its effectiveness in optimizing different traffic and environmental objectives, but also in relation to local vs. global benefits, trade-off between delay and emissions, impact of sensor locations, and different levels of network saturation. The second method, called the Advanced Reinforcement Learning (ARL), employs the potential-based reward shaping function using Q-learning and 3rd party advisor to enhance its performance over conventional reinforcement learning. The potential-based reward shaping in this thesis obtains an opinion from the 3rd party advisor when calculating reward. This technique can resolve the problem of sparse reward and slow learning speed. The ARL is tested with a range of existing reinforcement learning methods. The results clearly show that ARL outperforms the other models in almost all the scenarios. Lastly, this thesis evaluates the impact of information availability and quality on different real-time signal control methods, including the two proposed ones. This is driven by the observation that most responsive signal control models in the literature tend to make idealized assumptions on the quality and availability of data. This research shows the varying levels of performance deterioration of different signal controllers in the presence of missing data, data noise, and different data types. Such knowledge and insights are crucial for real-world implementation of these signal control methods.Open Acces
    • …
    corecore