191 research outputs found

    Collocated Collaboration Analytics: Principles and Dilemmas for Mining Multimodal Interaction Data

    Full text link
    © 2019, Copyright © 2017 Taylor & Francis Group, LLC. Learning to collaborate effectively requires practice, awareness of group dynamics, and reflection; often it benefits from coaching by an expert facilitator. However, in physical spaces it is not always easy to provide teams with evidence to support collaboration. Emerging technology provides a promising opportunity to make collocated collaboration visible by harnessing data about interactions and then mining and visualizing it. These collocated collaboration analytics can help researchers, designers, and users to understand the complexity of collaboration and to find ways they can support collaboration. This article introduces and motivates a set of principles for mining collocated collaboration data and draws attention to trade-offs that may need to be negotiated en route. We integrate Data Science principles and techniques with the advances in interactive surface devices and sensing technologies. We draw on a 7-year research program that has involved the analysis of six group situations in collocated settings with more than 500 users and a variety of surface technologies, tasks, grouping structures, and domains. The contribution of the article includes the key insights and themes that we have identified and summarized in a set of principles and dilemmas that can inform design of future collocated collaboration analytics innovations

    Collaborative design : managing task interdependencies and multiple perspectives

    Get PDF
    This paper focuses on two characteristics of collaborative design with respect to cooperative work: the importance of work interdependencies linked to the nature of design problems; and the fundamental function of design cooperative work arrangement which is the confrontation and combination of perspectives. These two intrinsic characteristics of the design work stress specific cooperative processes: coordination processes in order to manage task interdependencies, establishment of common ground and negotiation mechanisms in order to manage the integration of multiple perspectives in design

    Analysing, visualising and supporting collaborative learning using interactive tabletops

    Get PDF
    The key contribution of this thesis is a novel approach to design, implement and evaluate the conceptual and technological infrastructure that captures student’s activity at interactive tabletops and analyses these data through Interaction Data Analytics techniques to provide support to teachers by enhancing their awareness of student’s collaboration. To achieve the above, this thesis presents a series of carefully designed user studies to understand how to capture, analyse and distil indicators of collaborative learning. We perform this in three steps: the exploration of the feasibility of the approach, the construction of a novel solution and the execution of the conceptual proposal, both under controlled conditions and in the wild. A total of eight datasets were analysed for the studies that are described in this thesis. This work pioneered in a number of areas including the application of data mining techniques to study collaboration at the tabletop, a plug-in solution to add user-identification to a regular tabletop using a depth sensor and the first multi-tabletop classroom used to run authentic collaborative activities associated with the curricula. In summary, while the mechanisms, interfaces and studies presented in this thesis were mostly explored in the context of interactive tabletops, the findings are likely to be relevant to other forms of groupware and learning scenarios that can be implemented in real classrooms. Through the mechanisms, the studies conducted and our conceptual framework this thesis provides an important research foundation for the ways in which interactive tabletops, along with data mining and visualisation techniques, can be used to provide support to improve teacher’s understanding about student’s collaboration and learning in small groups

    A systematic technology evaluation and selection method for computer-supported collaborative design

    Get PDF
    Design is a global activity. It requires collaboration between individuals across borders and beyond barriers. Modern global design is achieved using computer technologies that support many activities of a design process. However, merely supporting design does not guarantee that it is a successful endeavour. The requirements of computer-supported collaborative design are abstract. They are influenced by human-to-human interaction and/or human to computer interaction. As our society moves towards faster communication technologies and a higher number of collaborative technologies available, the need to evaluate the available tools and select the best tool at the appropriate time of the design process is becoming more compelling. If the best tools are not identified, there are missed opportunities for productivity, impacting team communication, cooperation, coordination, and collaboration. Student designers at University have experienced an observable change in technology use within their personal and academic lives. The proliferation of Web 2.0 technologies and the spread of social media, social network sites and mobile technologies have impacted how students socialise and engage in group project work. However, it is unclear if these technologies support or hinder the design process. This behaviour change has led to a motivation to understand the use of technologies to support Computer-Supported Collaborative Design teamwork. This research intended to support Computer-Supported Collaborative Design teamwork by defining the requirements of Computer-Supported Collaborative Design, the technologies which can be used to support Computer-Supported Collaborative Design, the technology functionalities which these technologies feature, and to use this knowledge to systematically evaluate and select the appropriate technology to use for any given collaborative situation. The outcomes of this research documented within this thesis became the development of a systematic and automated method to allow engineering design teams to evaluate technologies based on the existing knowledge of the requirements of Computer Supported Collaborative Design and select which technologies would best support their group design activities. This technology evaluation and selection method was achieved by the creation of the Computer-Supported Collaborative Design matrix, a tool which enables the evaluation of technologies against Computer-Supported Collaborative Design requirements; the creation of an auto-population method for the tool supporting consistency and efficiency of using the method; and the development of an education programme to ensure the correct use of the Computer-Supported Collaborative Design matrix. The Computer-Supported Collaborative Design matrix can be used to support the assessment and selection of technology for use in Computer-Supported Collaborative Design projects by engineering design teams in an educational environment. The tool has been evaluated through demonstration of use for a class and implementation within a class environment. Beyond the Computer-Supported Collaborative Design matrix as a tool, a robust and systematic method of creating the tool has been documented, which is the first step towards broader use of the tool.Design is a global activity. It requires collaboration between individuals across borders and beyond barriers. Modern global design is achieved using computer technologies that support many activities of a design process. However, merely supporting design does not guarantee that it is a successful endeavour. The requirements of computer-supported collaborative design are abstract. They are influenced by human-to-human interaction and/or human to computer interaction. As our society moves towards faster communication technologies and a higher number of collaborative technologies available, the need to evaluate the available tools and select the best tool at the appropriate time of the design process is becoming more compelling. If the best tools are not identified, there are missed opportunities for productivity, impacting team communication, cooperation, coordination, and collaboration. Student designers at University have experienced an observable change in technology use within their personal and academic lives. The proliferation of Web 2.0 technologies and the spread of social media, social network sites and mobile technologies have impacted how students socialise and engage in group project work. However, it is unclear if these technologies support or hinder the design process. This behaviour change has led to a motivation to understand the use of technologies to support Computer-Supported Collaborative Design teamwork. This research intended to support Computer-Supported Collaborative Design teamwork by defining the requirements of Computer-Supported Collaborative Design, the technologies which can be used to support Computer-Supported Collaborative Design, the technology functionalities which these technologies feature, and to use this knowledge to systematically evaluate and select the appropriate technology to use for any given collaborative situation. The outcomes of this research documented within this thesis became the development of a systematic and automated method to allow engineering design teams to evaluate technologies based on the existing knowledge of the requirements of Computer Supported Collaborative Design and select which technologies would best support their group design activities. This technology evaluation and selection method was achieved by the creation of the Computer-Supported Collaborative Design matrix, a tool which enables the evaluation of technologies against Computer-Supported Collaborative Design requirements; the creation of an auto-population method for the tool supporting consistency and efficiency of using the method; and the development of an education programme to ensure the correct use of the Computer-Supported Collaborative Design matrix. The Computer-Supported Collaborative Design matrix can be used to support the assessment and selection of technology for use in Computer-Supported Collaborative Design projects by engineering design teams in an educational environment. The tool has been evaluated through demonstration of use for a class and implementation within a class environment. Beyond the Computer-Supported Collaborative Design matrix as a tool, a robust and systematic method of creating the tool has been documented, which is the first step towards broader use of the tool

    ECSCW 2013 Adjunct Proceedings The 13th European Conference on Computer Supported Cooperative Work 21 - 25. September 2013, Paphos, Cyprus

    Get PDF
    This volume presents the adjunct proceedings of ECSCW 2013.While the proceedings published by Springer Verlag contains the core of the technical program, namely the full papers, the adjunct proceedings includes contributions on work in progress, workshops and master classes, demos and videos, the doctoral colloquium, and keynotes, thus indicating what our field may become in the future

    Implementation patterns for supporting learning and group interactions

    Full text link
    This thesis covers research on group learning by using a computer as the medium. The computer software provides the basic blending of the students contributions augmented by the effects generated for the specific learning domain by a system of agents to guide the process of the students learning. The research is based on the approach that the computer as a medium is not an end point of the interaction. The development of agents in based on Human-Computer-Human interaction or HCH. HCH is about removing the idea that the role of the computer is that of an intelligent agent and reducing its role to that of a mixer, with the ability to insert adaptive electronic (software) components that add extra effects and depth to the product of the human-human interactions. For the computer to achieve this support, it must be able to analyse the input from the individuals and the group as a whole. Experiments have been conducted on groups working face to face, and then on groups using software developed for the research. Patterns of interaction and learning have been extracted from the logs and files of these group sessions. Also a pattern language has been developed by which to describe these patterns, so that the agent support needed to analyse and respond appropriately to each pattern can be developed. The research has led to the derivation of a structure that encompasses all the types of support required, and provides the format for implementing each type of support. The main difficulty in this work is the limited ability of computers to analyse human thoughts through their actions. However progress is made in analysing the level of approach by students to a range of learning concepts. The research identified the separate patterns that contribute to learning agents development and form a language of learning processes, and the agents derived from these patterns could in future be linked into a multi-agent system to support learning

    An investigation into a distributed virtual reality environment for real-time collaborative 4D construction planning and simulation

    Get PDF
    The use and application of 4 Dimensional Computer Aided Design (4D CAD) is growing within the construction industry. 4D approaches have been the focus of many research efforts within the last decade and several commercial tools now exist for the creation of construction simulations using 4D approaches. However, there are several key limitations to the current approaches. For example, 4D models are normally developed after the initial planning of a project has taken place using more traditional techniques such as Critical Path Method (CPM). Furthermore, mainstream methodologies for planning are based on individual facets of the construction process developed by discrete contractors or sub-contractors. Any 4D models generated from these data are often used to verify work flows and identify problems that may arise, either in terms of work methods or sequencing issues. Subsequently, it is perceived that current 4D CAD approaches provide a planning review mechanism rather than a platform for a novel integrated approach to construction planning. The work undertaken in this study seeks to address these issues through the application of a distributed virtual reality (VR) environment for collaborative 4D based construction planning. The key advances lie in catering for geographically dispersed planning by discrete construction teams. By leveraging networked 4D-VR based technologies, multidisciplinary planners, in different places, can be connected to collaboratively perform planning and create an integrated and robust construction schedule leading to a complete 4D CAD simulation. Establishing such a complex environment faces both technological and social challenges. Technological challenges arise from the integration of traditional and recent 4D approaches for construction planning with an ad hoc application platform of VR linked through networked computing. Social challenges arise from social dynamics and human behaviours when utilizing VR-based applications for collaborative work. An appropriate 4D-based planning method in a networked VR based environment is the key to gaining a technical advancement and this approach to distributed collaborative planning tends to promote computer-supported collaborative work (CSCW). Subsequently, probing suitable CSCW design and user interface/interaction (UI) design are imperative for solutions to achieve successful applicability. Based on the foregoing, this study developed a novel robust 4D planning approach for networked construction planning. The new method of interactive definition was devised through theoretical analysis of human-computer interaction (HCI) studies, a comparison of existing 4D CAD creation, and 3D model based construction planning. It was created to support not only individual planners’ work but multidisciplinary planners’ collaboration, and lead to interactive and dynamic development of a 4D simulation. From a social perspective, the method clarified and highlighted relevant CSCW design to enhance collaboration. Applying this rationale, the study specified and implemented a distributed groupware solution for collaborative 4D construction planning. Based on a developed system architecture, application mode and dataflow, as well as a real-time data exchange protocol, a prototype system entitled ‘4DX’ was implemented which provides a platform for distributed multidisciplinary planners to perform real-time collaborative 4D construction planning. The implemented toolkit targeted a semi-immersive VR platform for enhanced usability with compatibility of desktop VR. For the purpose of obtaining optimal UI design of this kind of VR solution, the research implemented a new user-centred design (UCD) framework of Taguchi-Compliant User-Centred Design (TC-UCD) by adapting and adopting the Taguchi philosophy and current UCD framework. As a result, a series of UIs of the VR-based solution for multifactor usability evaluation and optimization were developed leading to a VR-based solution with optimal UIs. The final distributed VR solution was validated in a truly geographically dispersed condition. Findings from the verification testing, the validation, and the feedback from construction professionals proved positive in addition to providing constructive suggestions to further reinforce the applicability of the approach in the future.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    SID 04, Social Intelligence Design:Proceedings Third Workshop on Social Intelligence Design

    Get PDF

    A student-facing dashboard for supporting sensemaking about the brainstorm process at a multi-surface space

    Full text link
    © 2017 Association for Computing Machinery. All rights reserved. We developed a student-facing dashboard tuned to support posthoc sensemaking in terms of participation and group effects in the context of collocated brainstorming. Grounding on foundations of small-group collaboration, open learner modelling and brainstorming at large interactive displays, we designed a set of models from behavioural data that can be visually presented to students. We validated the effectiveness of our dashboard in provoking group reflection by addressing two questions: (1) What do group members gain from studying measures of egalitarian contribution? and (2) What do group members gain from modelling how they sparked ideas off each other? We report on outcomes from a study with higher education students performing brainstorming. We present evidence from i) descriptive quantitative usage patterns; and ii) qualitative experiential descriptions reported by the students. We conclude the paper with a discussion that can be useful for the community in the design of collective reflection systems
    • …
    corecore