2,422 research outputs found

    Encapsulating and representing the knowledge on the evaluation of an engineering system

    Get PDF
    This paper proposes a cross-disciplinary methodology for a fundamental question in product development: How can the innovation patterns during the evolution of an engineering system (ES) be encapsulated, so that it can later be mined through data mining analysis methods? Reverse engineering answers the question of which components a developed engineering system consists of, and how the components interact to make the working product. TRIZ answers the question of which problem-solving principles can be, or have been employed in developing that system, in comparison to its earlier versions, or with respect to similar systems. While these two methodologies have been very popular, to the best of our knowledge, there does not yet exist a methodology that reverseengineers and encapsulates and represents the information regarding the complete product development process in abstract terms. This paper suggests such a methodology, that consists of mathematical formalism, graph visualization, and database representation. The proposed approach is demonstrated by analyzing the design and development process for a prototype wrist-rehabilitation robot

    Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification

    Get PDF
    This paper reports on the development of two number of robotic hands have been developed which focus on tele-operated high speed anthropomorphic dextrous robotic hands. The aim of developing these hands was to achieve a system that seamlessly interfaced between humans and robots. To provide sensory feedback, to a remote operator tactile sensors were developed to be mounted on the robotic hands. Two systems were developed, the first, being a skin sensor capable of shape reconstruction placed on the palm of the hand to feed back the shape of objects grasped and the second is a highly sensitive tactile array for surface texture identification

    The eel-like robot

    Get PDF
    International audienceThe aim of this project is to design, study and build an ``eel-like robot'' prototype able to swim in three dimensions. The study is based on the analysis of eel swimming and results in the realization of a prototype with 12 vertebrae, a skin and a head with two fins. To reach these objectives, a multidisciplinary group of teams and laboratories has been formed in the framework of two French projects

    Mechanical design of a biologically inspired prosthetic hand, the touch hand 3.

    Get PDF
    Masters Degrees. University of KwaZulu-Natal. Durban.The Touch hand 3 was developed to improve on the mechanical and mechatronic design of the Touch hand 2. A basic prototype hand was rapidly developed using 3D CAD software and 3D printing and tested on an amputee. The improvements in the final design included an improved finger actuation system utilizing mechanical linkages, an improved Electromyography (EMG) operated control system, four micro-linear servo-motors, modular fingers, hinges and chassis. The final design was designed such that the hand can be easily interchanged between a fully mechatronic system and full mechanically operated system using the same generic parts including the chassis, finger and wrist components. The hands were both tested with the Yale Open Hand test, a test used to assess robotic grippers. The Southampton Hand Assessment Procedure (SHAP), a test usually used to assess the effectiveness of upper limb prostheses, was also carried out on both versions of the hand. The hands were also tested with a hand dynamometer to assess their grip strength. The hand were compared to current hands on the market and their strength and weaknesses analysed

    Practice of law in the provisioning of accessibility facilities for person with disabilities in Malaysia

    Get PDF
    Malaysia’s significant changes can be seen clearly through the improvement of social welfare of the disabled and people with disabilities. Although the governments has carried out various policies and provide facilities as well as provision for the disabled but there are still many obstacles encountered by people with disabilities, especially the legal and the accessibility of facilities and services. Therefore, this paper attempts to discuss the practice of law relating of legal procedure particularly for disabled users which affects the movement of these people from one destination to another. This paper discusses the practice of law adopted in the preparation of facilities for disabled people to help them make movement independently. The study was conducted by secondary data to the Malaysia legal and policies for disabled person by comparing with United Kingdom (UK). Malaysia has come out with a strong legal framework for disabled person through People with Disabilities Act 2008 (Act 685). There are several areas in the act that still can be improved to support disabled person

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Kinematic Modeling Of An Automated Laser Line Scanning System

    Get PDF
    This research work describes the geometric coordinate transformation in an automated laser line scanning system caused by movements required for scanning a component surface. The elements of an automated laser scanning system (robot, laser line scanner, and the component coordinate system) function as a mechanical linkage to obtain a trajectory on a component surface. This methodology solves the forward kinematics, derives the component surface, and uses inverse kinematic equations to characterize the movement of the entire automated scanning system on point trajectory. To reach a point on the component, joint angles of robot have been calculated. As a result, trajectory path is obtained. This obtained robot poses on point trajectory of the component surface can be used as an input for future work that aims to develop optimal scan paths to collect “best” point cloud data sets. This work contributes in laser scanning inspection of component surfaces in manufacturing, remanufacturing, and reverse engineering applications

    Generalized approach to the modelling of modular machines

    Get PDF
    This paper describes a method of graphically simulating modular machines within a computer aided design environment. This forms part of a much larger Science and Engineering Research Council (SERC) funded programme aimed at advancing modern practices when designing and building manufacturing machines. A generalized approach to the synthesis of the generic features of various kinematic motion pairs is presented and prismatic and revolute motion primitives generalized in their functional and geometric aspects. A hierarchical ring and tree data structure has been designed and implemented to comprehensively represent these motion pairs and to simulate their performance. More complex modular manufacturing machines can be represented using information from a library of up to three degree of freedom motion modules. Seven two degree of freedom motion primitives and twelve three degree of freedom motion primitives with articulation configurations have been analyzed and included in the motion primitive library. The configuration of modular machines comprised of physically separate but logically connected distributed motion primitives are described. Examples of a two-finger industrial robot gripper and a three-finger industrial robot hand are used to demonstrate the general principles

    Using a 3DOF Parallel Robot and a Spherical Bat to hit a Ping-Pong Ball

    Get PDF
    Playing the game of Ping-Pong is a challenge to human abilities since it requires developing skills, such as fast reaction capabilities, precision of movement and high speed mental responses. These processes include the utilization of seven DOF of the human arm, and translational movements through the legs, torso, and other extremities of the body, which are used for developing different game strategies or simply imposing movements that affect the ball such as spinning movements. Computationally, Ping-Pong requires a huge quantity of joints and visual information to be processed and analysed, something which really represents a challenge for a robot. In addition, in order for a robot to develop the task mechanically, it requires a large and dexterous workspace, and good dynamic capacities. Although there are commercial robots that are able to play Ping-Pong, the game is still an open task, where there are problems to be solved and simplified. All robotic Ping-Pong players cited in the bibliography used at least four DOF to hit the ball. In this paper, a spherical bat mounted on a 3-DOF parallel robot is proposed. The spherical bat is used to drive the trajectory of a Ping-Pong ball.Fil: Trasloheros, Alberto. Universidad Aeronáutica de Querétaro; MéxicoFil: Sebastián, José María. Universidad Politécnica de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Torrijos, Jesús. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin
    corecore