24 research outputs found

    Tilausohjautuvan mekaniikkasuunnittelun prosessin kehittäminen

    Get PDF
    Many companies respond to increasingly varying and demanding customer requirements with engineer-to-order (ETO) production system that enables the production of customer-specific solutions. The design activities in ETO are crucial, and ETO processes struggle with many challenges due to uncertainty. Yet, they are often not managed properly. Describing and analyzing knowledge-intensive processes, such as ETO processes, is often found difficult. The case company mechanical order-specific engineering (OSE) process was lacking continuous improvement and posed a risk of being a bottleneck within the overall ETO process. Therefore, the objective of the study was to describe the current situation in the mechanical OSE process in the case company and define improvement targets based on the analysis. The process was examined using a workshop, interviews and observation. The workshop and interviews did not result in sufficient level of detail to describe the process, because the methods were not able to overrule the prejudice and concerns of the employees towards process improvement. Through participant observation inspired by the Gemba methodology, the trust and enthusiasm of the employees was increased, and the current state could be understood and described. It enabled to analyze the activities and their value. In addition, a work time analysis was applied in order to define a performance metrics system for the mechanical ETO process. However, the key finding of the data analysis was that the data is not recorded according to instructions and the amount of data was thus insufficient for further analysis. The findings of the study were in accordance with the characteristics of ETO systems presented in literature. The recommendations for the case company concerned knowledge sharing, standardization of activities, automatization, improving upstream functions and transferring tasks to other processes. In addition, the study demonstrated the challenges in describing knowledge-intensive processes, and it was found that the participant observation was the most applicable method in employee engagement and in process discovery.Asiakkaat vaativat yhä enemmän poikkeavia sovelluksia tuotteisiin, mihin yritykset vastaavat tilausohjautuvalla suunnittelulla (engineer-to-order, ETO), joka mahdollistaa asiakasräätälöityjen tuotteiden valmistamisen. ETO-systeemeissä suunnittelutehtävät ovat ratkaisevassa osassa, ja ETO-prosesseissa on useita haasteita, jotka johtuvat menetelmään liittyvästä epävarmuudesta. ETO-prosessien hallinta on kuitenkin usein puutteellista. Osaamisintensiivisten (knowledge-intensive) prosessien, kuten ETO-prosessien, kuvaaminen on yleensä haastavaa. Kohdeyrityksen tilausohjautuvassa mekaniikkasuunnittelussa ei oltu toteutettu jatkuvaa parantamista, ja lisäksi pidettiin riskinä sitä, että mekaniikkasuunnittelu olisi koko ETO-prosessin pullonkaula. Työn tavoitteena oli kuvata ETO-mekaniikkasuunnittelun nykytilanne yrityksessä ja määritellä kehityskohteet analyysin perusteella. Prosessia tutkittiin työpajan, haastattelujen ja havainnoinnin kautta. Työpaja ja haastattelut eivät tuottaneet tarpeeksi yksityiskohtaisia tuloksia, sillä menetelmät eivät kyenneet muuttamaan työntekijöiden ennakkoasenteita ja huolestuneisuutta prosessikehitystä kohtaan. Osallistavaa havainnointitutkimusta hyödynnettiin omaksumalla Gemba-metodologian perusperiaatteita, jolloin onnistuttiin parantamaan työntekijöiden luottamusta ja mielenkiintoa kehityksen suhteen. Sen pohjalta oli mahdollista laatia tarkka kuvaus prosessista ja suorittaa analyysi kunkin prosessiin kuuluvan tehtävän hyödyllisyydestä ja tarpeellisuudesta. Lisäksi tehtiin työaika-analyysi, jonka tarkoituksena oli toimia pohjana tehokkuusmittareille. Analyysiä ei kuitenkaan pystytty suorittamaan loppuun, sillä löydökset osoittivat, että dataa ei ole kirjattu riittävällä tarkkuudella, eikä sitä täten pystytty hyödyntämään. Työn löydökset olivat yhdenmukaiset kirjallisuudessa esitettyjen ETO-systeemeille tyypillisten ongelmien kanssa. Suositukset kohdeyritykselle liittyivät osaamisen jakamiseen, tehtävien standardoimiseen, automaatioon, sekä tehtävien siirtämiseen muihin prosesseihin ja toimintoihin. Lisäksi työssä tuotiin esille osaamisintensiivisten prosessien kuvaamiseen liittyvät haasteet, ja havaittiin, että havainnointitutkimus oli sopivin menetelmä työntekijöiden osallistamiseen ja prosessien kuvaamiseen

    Un Modèle basé sur les Grammaires Attribuées Gardées pour les Processus Dynamiques, Centrés sur l’Utilisateur, Distribués et Collaboratifs: Cas de la Surveillance Epidémiologique

    Get PDF
    Dynamic processes in which users need to work together and collaborate in myriad ways on process models defined on-the-fly are fast becoming the rule rather than the exception. This thesis presents the design of a purely declarative modelling approach for dynamic, collaborative, user-centred, and data-driven processes. First, we organize the work of a user into task hierarchies which we model as mindmaps, which are trees used to visualize, organize, and log information about tasks in which the user is involved. We introduce the model of guarded attribute grammars, or GAG, to help the automation of updating such maps. A GAG consists of an underlying grammar, that specifies the logical structure of the map, with semantic rules which are used both to govern the evolution of the tree structure (how an open node may be rened to a sub-tree) and to compute the values of some of its attributes. The map enriched with this extra information and with high-level constructs for task dependencies; collaborationand user-interactions is termed an active workspace or AW. Communication between AWs is essentially through the exchange of messages without a shared memory thus enabling convenient distribution on an asynchronous architecture. Lastly, we introduce a language syntax for GAG specification and design a prototype that includes an internal domain specific language (in Haskell) for their specification and a graphical user interface to simulate its execution in a distributed environment. We motivate our approach and illustrate its language syntax and features on a case study for a disease surveillance system.De plus en plus, les utilisateurs collaborent de multiples façons sur des processus dynamiques construit de manière progressive. Dans cette thèse, nous concevons une nouvelle approche d´déclarative de modélisation des processus dynamiques, centrés sur l’utilisateur et dirigés par les données. Tout d’abord, nous organisons le travail d’un utilisateur par des hiérarchies des taches, représentées par des cartes heuristiques (arbre de taches). Ces derniers sont utilisés pour visualiser, organiser, et sauvegarder les informations sur les tâches menés par l’utilisateur. Nous introduisons ensuite le modèle des grammaires attribuées gardées, ou GAG, pour faciliter l’automatisation de la manipulation de telles cartes. Une GAG consiste en une grammaire sous-jacente, qui spécifie la structure logique de la carte, avec des règles sémantiques qui servent à la fois a` gouverner l’évolution de l’arbre des taches (raffinement des nœuds ouverts) et a` calculer les valeurs de certains de ses attributs. La carte enrichie de ces informations supplémentaires et d’autres concepts de haut niveau pour les d´dépendances entre les taches, la collaboration et les interactions utilisateur est appelée Active Workspace ou AW. La communication entre AWs est essentiellement par échange des messages permettant ainsi une implémentation commode sur une architecture distribuée et asynchrone. Enfin, nous décrivons une syntaxe de langage pour la spécification des processus en utilisant les GAGs et concevons un prototype qui inclut un langage spécifique au domaine, interne `a Haskell, pour leur spécification et une interface utilisateur graphique pour la simulation de l’exécution dans un environnement distribué. Nous motivons notre approche et illustrons sa syntaxe et ses caractéristiques sur une étude de cas portant sur le processus de surveillance épidémiologique

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Improvement of Knowledge-Intensive Business Processes Through Analytics and Knowledge Sharing

    Get PDF
    This applied research focuses on knowledge-intensive business processes (KIBPs) supported by Business Intelligence and Analytics (BI&A), here termed BI&A-supported KIBPs. Examples of these processes include customer-support services, risk and assurance processes, and design of marketing campaigns. This research aims to investigate an industry-informed research challenge of ongoing improvement of BI&A-supported KIBPs, in particular the role of BI&A in process improvement. This paper presents a qualitative research case study, conducted in a large retail distribution company, using a theoretical lens of Work Systems Theory (WST). We describe an innovative approach to ongoing improvement of BI&A-supported KIBP and confirm an important role played by BI&A in this context. Informed by these research insights, we then propose a new theoretical model of ongoing improvement of BI&A-supported KIBP and explain its significance using relevant literature. The model is also highly relevant for industry practitioners looking for new sources of competitive differentiation, beyond BI&A technology

    Investigating the virtual representation of human resources

    Get PDF
    Despite all the advancements of software technologies to increase the productivity of companies, their capabilities to find solutions for certain problem domains are still limited. For the purpose of collaboratively addressing problems, which cannot be solved by algorithms alone, humans as computational units that are connected in a network of hardware and software resources, are therefore becoming increasingly popular. In this diploma thesis we investigate virtual representations of human resources by analyzing properties of scientific work in the areas of human computation and by examining available sources of information, especially social networks like Facebook, Google+, LinkedIn, XING and GitHub. To comprise both the academic requirements and the offered data from the market products, which according to our comparison substantially differ, we present our concept of a virtual human resource representation. It provides thirteen categories of more than 150 definable attributes to create a basis for the representation of human resources in virtual environments that support collaborative work and business-related processes. Furthermore we show how to access human information using the example of Google+ and how to save this information as a virtual human web ontology instance to be potentially used in web based environments.Trotz aller Fortschritte in den Gebieten der Softwaretechnologie um die Produktivität von Firmen zu steigern, sind diese immer noch begrenzt, um Lösungen für gewisse Problemstellungen zu finden. Für den Zweck kollaborativ Proleme anzugehen, die durch Algorithmen alleine nicht gelöst werden können, werden Menschen, die als Recheneinheiten mit anderen Softwareund Hardware-Ressourcen verbunden sind, zunehmend populärer. In dieser Diplomarbeit untersuchen wir virtuelle Darstellungen von menschlichen Ressourcen durch die Analyse von Eigenschaften aus wissenschaftlichen Arbeiten in den Bereichen der Menschen-basierten Datenverarbeitung und durch die Prüfung verfügbarer Informationsquellen, insbesondere sozialer Netzwerke, wie Facebook, Google+, LinkedIn, XING und GitHub. Um sowohl die akademischen Anforderungen, als auch die angebotenen Daten aus den sozialen Netzwerken zu erfassen, die sich entsprechend unserem Vergleich wesentlich unterscheiden, präsentieren wir unser Konzept der virtuellen Repräsentation einer menschlichen Ressource. Sie bietet dreizehn Kategorien mit mehr als 150 definierbaren Eigenschaften an, um eine Grundlage für die Darstellung von menschlichen Ressourcen in virtuellen Umgebungen zu bilden, welche gemeinsames Arbeiten und unternehmensbezogene Prozesse unterstützen. Außerdem zeigen wir, wie man auf diese menschlichen Daten am Beispiel von Google+ zugreifen kann und wie diese Informationen als virtuelle menschliche Web-Ontologie-Instanzen gespeichert werden können, um möglicherweise in webbasierten Umgebungen eingesetzt zu werden

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements
    corecore