233,425 research outputs found

    Modelling and Analysing Standard Use within System of Systems

    Get PDF
    Despite increasing interest by organisations in deploying SoS (Systems of Systems) to manage complexity, and promote agility within their businesses, there are a number of research areas that are currently underdeveloped. One of these is the role of standards within organisations which develop, operate and share systems within SoS. The paper is not about what standards should be chosen, or indeed developed. Instead, it explores the information that needs to be elicited and modelled, to reason about the standards that member systems of a SoS adhere to, and to provide a structure within which to promote discussion of the incompatibilities that inevitably arise within large SoS. The paper evaluates the approach taken using a running example based on the supply chain SoS for RAF Nimrod aircraft, in light of the recent investigations into the explosion of an aircraft in 2006. The paper concludes that the interaction of standards within SoS is a complex issue, but that a methodology to discover, model and analyse problems can be developed to further best practice in this area

    Formalising responsibility modelling for automatic analysis

    Get PDF
    Modelling the structure of social-technical systems as a basis for informing software system design is a difficult compromise. Formal methods struggle to capture the scale and complexity of the heterogeneous organisations that use technical systems. Conversely, informal approaches lack the rigour needed to inform the software design and construction process or enable automated analysis. We revisit the concept of responsibility modelling, which models social technical systems as a collection of actors who discharge their responsibilities, whilst using and producing resources in the process. Responsibility modelling is formalised as a structured approach for socio-technical system requirements specification and modelling, with well-defined semantics and support for automated structure and validity analysis. The effectiveness of the approach is demonstrated by two case studies of software engineering methodologies

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Investigation Interoperability Problems in Pharmacy Automation: A Case Study in Saudi Arabia

    Get PDF
    The aim of this case study is to investigate the nature of interoperability problems in hospital systems automation. One of the advanced healthcare providers in Saudi Arabia is the host of the study. The interaction between the pharmacy system and automated medication dispensing cabinets is the focus of the case system. The research method is a detailed case study where multiple data collection methods are used. The modelling of the processes of inpatient pharmacy systems is presented using Business Process Model Notation. The data collected is analysed to study the different interoperability problems. This paper presents a framework that classifies health informatics interoperability implementation problems into technical, semantic, organisational levels. The detailed study of the interoperability problems in this case illustrates the challenges to the adoption of health information system automation which could help other healthcare organisations in their system automation projects

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    BioNessie - a grid enabled biochemical networks simulation environment

    Get PDF
    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations

    Overview of methods to analyse dynamic data

    Get PDF
    This book gives an overview of existing data analysis methods to analyse the dynamic data obtained from full scale testing, with their advantages and drawbacks. The overview of full scale testing and dynamic data analysis is limited to energy performance characterization of either building components or whole buildings. The methods range from averaging and regression methods to dynamic approaches based on system identification techniques. These methods are discussed in relation to their application in following in situ measurements: -measurement of thermal transmittance of building components based on heat flux meters; -measurement of thermal and solar transmittance of building components tested in outdoor calorimetric test cells; -measurement of heat transfer coefficient and solar aperture of whole buildings based on co-heating or transient heating tests; -characterisation of the energy performance of whole buildings based on energy use monitoring
    corecore