326 research outputs found

    Dynamic Network State Learning Model for Mobility Based WMSN Routing Protocol

    Get PDF
    The rising demand of wireless multimedia sensor networks (WMSNs) has motivated academia-industries to develop energy efficient, Quality of Service (QoS) and delay sensitive communication systems to meet major real-world demands like multimedia broadcast, security and surveillance systems, intelligent transport system, etc. Typically, energy efficiency, QoS and delay sensitive transmission are the inevitable requirements of WMSNs. Majority of the existing approaches either use physical layer or system level schemes that individually can’t assure optimal transmission decision to meet the demand. The cumulative efficiency of physical layer power control, adaptive modulation and coding and system level dynamic power management (DPM) are found significant to achieve these demands. With this motivation, in this paper a unified model is derived using enhanced reinforcement learning and stochastic optimization method. Exploiting physical as well as system level network state information, our proposed dynamic network state learning model (NSLM) applies stochastic optimization to learn network state-activity that derives an optimal DPM policy and PHY switching scheduling. NSLM applies known as well as unknown network state variables to derive transmission and PHY switching policy, where it considers DPM as constrained Markov decision process (MDP) problem. Here,the use of Hidden Markov Model and Lagrangian relaxation has made NSLM convergence swift that assures delay-sensitive, QoS enriched, and bandwidth and energy efficient transmission for WMSN under uncertain network conditions. Our proposed NSLM DPM model has outperformed traditional Q-Learning based DPM in terms of buffer cost, holding cost, overflow, energy consumption and bandwidth utilization

    Intrusion detection in IPv6-enabled sensor networks.

    Get PDF
    In this research, we study efficient and lightweight Intrusion Detection Systems (IDS) for ad-hoc networks through the lens of IPv6-enabled Wireless Sensor Actuator Networks. These networks consist of highly constrained devices able to communicate wirelessly in an ad-hoc fashion, thus following the architecture of ad-hoc networks. Current state of the art IDS in IoT and WSNs have been developed considering the architecture of conventional computer networks, and as such they do not efficiently address the paradigm of ad-hoc networks, which is highly relevant in emerging network paradigms, such as the Internet of Things (IoT). In this context, the network properties of resilience and redundancy have not been extensively studied. In this thesis, we first identify a trade-off between the communication and energy overheads of an IDS (as captured by the number of active IDS agents in the network) and the performance of the system in terms of successfully identifying attacks. In order to fine-tune this trade-off, we model networks as Random Geometric Graphs; these are a rigorous approach that allows us to capture underlying structural properties of the network. We then introduce a novel IDS architectural approach that consists of a central IDS agent and set of distributed IDS agents deployed uniformly at random over the network area. These nodes are able to efficiently detect attacks at the networking layer in a collaborative manner by monitoring locally available network information provided by IoT routing protocols, such as RPL. The detailed experimental evaluation conducted in this research demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates. We also show that the performance of our IDS in ad-hoc networks does not rely on the size of the network but on fundamental underling network properties, such as the network topology and the average degree of the nodes. The experiments show that our proposed IDS architecture is resilient against frequent topology changes due to node failures

    Trust correlation of mobile agent nodes with a regular node in a Adhoc network using decision-making strategy

    Get PDF
    A mobile agent offers discrete advantage both in facilitating better transmission as well as controlling the traffic load in Mobile Adhoc Network (MANET). Hence, such forms of network offers maximized dependencies on mobile agents in terms of its trust worthiness. At present, there are various work being carried out towards resisting security breach in MANET; however approaches using mobile agent based mechanism is few to found. Therefore, the proposed system introduces a novel mathematical model where an extensive decision making system has been constructed for identifying the malicious intention of mobile agents in case they go rogues. By adopting multi-tier communication policy and fairness concept, the proposed system offers the capability to resist any form of malicious activity of mobile agent without even presence of any apriori information of adversary. The outcome shows proposed system outshines existing security scheme in MANET

    Adatbiztonság és adatvédelem a mindent átható számítógépes technológia világában = Security and Privacy Issues in Pervasive Computing

    Get PDF
    (1) Több ugrásos vezeték nélküli hálózatok biztonsága: Ad hoc és szenzorhálózatokban használt útvonalválasztó protokollok biztonágának analízise, új bizonyíthatóan biztonságos protokollok tervezése (enairA, Secure tinyLUNAR). Új támadás-ellenálló adataggregációs algoritmusok tervezése (RANBAR, CORA) és analízise. Spontán kooperáció kialakulása feltételeinek vizsgálata ad hoc és szenzorhálózatokban, kooperáció ösztönzése késleltetéstűrő ad hoc hálózatokban (Barter). (2) Személyes biztonsági tokenek: A nem-megbízható terminál probléma vizsgálata, feltételes aláírásra épülő megoldás tervezése és analízise. (3) RFID biztonsági és adatvédelmi kérdések: Kulcsfa alapú azonosító-rejtő hitelesítés analízise, a privacy szintjének meghatározása. Optimális kulcsfa tervezése. Új azonosító-rejtő hitelesítő protokoll tervezése és összehasonlítása a kulcsfa alapú módszerrel. (4) Formális biztonsági modellek: Szimulációs paradigmára épülő biztonsági modell útvonalválasztó protokollok analízisére. Támadó-modellek és analízis módszer támadás-ellenálló adataggregáció vizsgálatára. Formális modell kidolgozása a korlátozott számítási képességekkel rendelkező humán felhasználó leírására. Privacy metrika kidolgozása azonosító-rejtő hitekesítő protokollok számára. Játékelméleti modellek a spontán koopráció vizsgálatára ad hoc és szenzor hálózatokban, valamint spam és DoS elleni védelmi mechanizmusok analízisére. | (1) Security of multi-hop wireless networks: Security analysis of routing protocols proposed for mobile ad hoc and sensor networks, development of novel routing protocols with provable security (enairA, Secure tinyLUNAR). Development of novel resilient aggregation algorithms for sensor networks (RANBAR, CORA). Analysis of conditions for the emergence of spontaneous cooperation in ad hoc and sensor networks, novel algorithm to foster cooperation in opportunistic ad hoc networks (Barter). (2) Security tokens: Analysis of the untrusted terminal problem, mitigation by using conditional signature based protocols. (3) RFID security and privacy: Analysis of key-tree based private authentication, novel metrics to measure the level of privacy. Design of optimal key-trees, novel private authentication protocols based on group keys. (4) Formal models: Modeling framework for routing protocols based on the simulation paradigm, proof techniques for analyzing the security of routing. Attacker models and analysis techniques for resilient aggregation in sensor networks. Formal model for representing the limited computing capacity of humans. Metrics for determining the level of privacy provided by private authentication protocols. Game theoretic models for studying cooperation in ad hoc and sensor networks, and for analysisng the performance of spam and DoS protection mechanisms

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device
    corecore