14,319 research outputs found

    Mechanisms for the generation and regulation of sequential behaviour

    Get PDF
    A critical aspect of much human behaviour is the generation and regulation of sequential activities. Such behaviour is seen in both naturalistic settings such as routine action and language production and laboratory tasks such as serial recall and many reaction time experiments. There are a variety of computational mechanisms that may support the generation and regulation of sequential behaviours, ranging from those underlying Turing machines to those employed by recurrent connectionist networks. This paper surveys a range of such mechanisms, together with a range of empirical phenomena related to human sequential behaviour. It is argued that the empirical phenomena pose difficulties for most sequencing mechanisms, but that converging evidence from behavioural flexibility, error data arising from when the system is stressed or when it is damaged following brain injury, and between-trial effects in reaction time tasks, point to a hybrid symbolic activation-based mechanism for the generation and regulation of sequential behaviour. Some implications of this view for the nature of mental computation are highlighted

    Cognitive control: componential or emergent?

    Get PDF
    The past twenty-five years have witnessed an increasing awareness of the importance of cognitive control in the regulation of complex behavior. It now sits alongside attention, memory, language and thinking as a distinct domain within cognitive psychology. At the same time it permeates each of these sibling domains. This paper reviews recent work on cognitive control in an attempt to provide a context for the fundamental question addressed within this Topic: is cognitive control to be understood as resulting from the interaction of multiple distinct control processes or are the phenomena of cognitive control emergent

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    A computer vision model for visual-object-based attention and eye movements

    Get PDF
    This is the post-print version of the final paper published in Computer Vision and Image Understanding. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.This paper presents a new computational framework for modelling visual-object-based attention and attention-driven eye movements within an integrated system in a biologically inspired approach. Attention operates at multiple levels of visual selection by space, feature, object and group depending on the nature of targets and visual tasks. Attentional shifts and gaze shifts are constructed upon their common process circuits and control mechanisms but also separated from their different function roles, working together to fulfil flexible visual selection tasks in complicated visual environments. The framework integrates the important aspects of human visual attention and eye movements resulting in sophisticated performance in complicated natural scenes. The proposed approach aims at exploring a useful visual selection system for computer vision, especially for usage in cluttered natural visual environments.National Natural Science of Founda- tion of Chin

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    Perceptual-gestural (mis)mapping in serial short-term memory: The impact of talker variability

    Get PDF
    The mechanisms underlying the poorer serial recall of talker-variable lists (e.g., alternating female–male voices) as compared with single-voice lists were examined. We tested the novel hypothesis that this talker variability effect arises from the tendency for perceptual organization to partition the list into streams based on voice such that the representation of order maps poorly onto the formation of a gestural sequence-output plan assembled in support of the reproduction of the true temporal order of the items. In line with the hypothesis, (a) the presence of a spoken lead-in designed to further promote by-voice perceptual partitioning accentuates the effect (Experiments 1 and 2); (b) the impairment is larger the greater the acoustic coherence is between nonadjacent items: Alternating-voice lists are more poorly recalled than four-voice lists (Experiment 3); and (c) talker variability combines nonadditively with phonological similarity, consistent with the view that both variables disrupt sequence output planning (Experiment 4). The results support the view that serial short-term memory performance reflects the action of sequencing processes embodied within general-purpose perceptual input-processing and gestural output-planning systems

    A quantitative evaluation of the AVITEWRITE model of handwriting learning

    Full text link
    Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an intense relation between curvature and speed. The Adaptive Vector Integration to Endpoint (AVITEWRITE) model of Grossberg and Paine (2000) proposed how such complex movements may be learned through attentive imitation. The model suggest how frontal, parietal, and motor cortical mechanisms, such as difference vector encoding, under volitional control from the basal ganglia, interact with adaptively-timed, predictive cerebellar learning during movement imitation and predictive performance. Key psycophysical and neural data about learning to make curved movements were simulated, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with isochrony, and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a Two-Thirds Power Law relation between angular velocity and curvature. However, the model learned from letter trajectories of only one subject, and only qualitative kinematic comparisons were made with previously published human data. The present work describes a quantitative test of AVITEWRITE through direct comparison of a corpus of human handwriting data with the model's performance when it learns by tracing human trajectories. The results show that model performance was variable across subjects, with an average correlation between the model and human data of 89+/-10%. The present data from simulations using the AVITEWRITE model highlight some of its strengths while focusing attention on areas, such as novel shape learning in children, where all models of handwriting and learning of other complex sensory-motor skills would benefit from further research.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (1-R29-DC02952-01); Office of Naval Research (N00014-92-J-1309, N00014-01-1-0624); Air Force Office of Scientific Research (F49620-01-1-0397); National Institute of Neurological Disorders and Stroke (NS 33173
    corecore