244 research outputs found

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    An overview of fuzzy techniques in supply chain management: bibliometrics, methodologies, applications and future directions

    Get PDF
    Every practice in supply chain management (SCM) requires decision making. However, due to the complexity of evaluated objects and the cognitive limitations of individuals, the decision information given by experts is often fuzzy, which may make it difficult to make decisions. In this regard, many scholars applied fuzzy techniques to solve decision making problems in SCM. Although there were review papers about either fuzzy methods or SCM, most of them did not use bibliometrics methods or did not consider fuzzy sets theory-based techniques comprehensively in SCM. In this paper, for the purpose of analyzing the advances of fuzzy techniques in SCM, we review 301 relevant papers from 1998 to 2020. By the analyses in terms of bibliometrics, methodologies and applications, publication trends, popular methods such as fuzzy MCDM methods, and hot applications such as supplier selection, are found. Finally, we propose future directions regarding fuzzy techniques in SCM. It is hoped that this paper would be helpful for scholars and practitioners in the field of fuzzy decision making and SCM

    AN EXTENDED SINGLE-VALUED NEUTROSOPHIC AHP AND MULTIMOORA METHOD TO EVALUATE THE OPTIMAL TRAINING AIRCRAFT FOR FLIGHT TRAINING ORGANIZATIONS

    Get PDF
    Aircraft’s training is crucial for a flight training organization (FTO). Therefore, an important decision that these organizations should wisely consider the choice of aircraft to be bought among many alternatives. The criteria for evaluating the optimal training aircraft for FTOs are collected based on the survey approach. Single valued neutrosophic sets (SVNS) have the degree of truth, indeterminacy, and falsity membership functions and, as a special case, neutrosophic sets (NS) deal with inconsistent environments. In this regard, this study has extended a single-valued neutrosophic analytic hierarchy process (AHP) based on multi-objective optimization on the basis of ratio analysis plus a full multiplicative form (MULTIMOORA) to rank the training aircraft as the alternatives. Moreover, a sensitivity analysis is performed to demonstrate the stability of the developed method. Finally, a comparison between the results of the developed approach and the existing approaches for validating the developed approach is discussed. This analysis shows that the proposed approach is efficient and with the other methods

    TOPSIS-RTCID for range target-based criteria and interval data

    Full text link
    [EN] The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is receiving considerable attention as an essential decision analysis technique and becoming a leading method. This paper describes a new version of TOPSIS with interval data and capability to deal with all types of criteria. An improved structure of the TOPSIS is presented to deal with high uncertainty in engineering and engineering decision-making. The proposed Range Target-based Criteria and Interval Data model of TOPSIS (TOPSIS-RTCID) achieves the core contribution in decision making theories through a distinct normalization formula for cost and benefits criteria in scale of point and range target-based values. It is important to notice a very interesting property of the proposed normalization formula being opposite to the usual one. This property can explain why the rank reversal problem is limited. The applicability of the proposed TOPSIS-RTCID method is examined with several empirical litreture’s examples with comparisons, sensitivity analysis, and simulation. The authors have developed a new tool with more efficient, reliable and robust outcomes compared to that from other available tools. The complexity of an engineering design decision problem can be resolved through the development of a well-structured decision making method with multiple attributes. Various decision approches developed for engineering design have neglected elements that should have been taken into account. Through this study, engineering design problems can be resolved with greater reliability and confidence.Jahan, A.; Yazdani, M.; Edwards, K. (2021). TOPSIS-RTCID for range target-based criteria and interval data. International Journal of Production Management and Engineering. 9(1):1-14. https://doi.org/10.4995/ijpme.2021.13323OJS11491Ahn, B.S. (2017). The analytic hierarchy process with interval preference statements. Omega, 67, 177-185. https://doi.org/10.1016/j.omega.2016.05.004Alemi-Ardakani, M., Milani, A.S., Yannacopoulos, S., Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems With Applications, 46, 426-438. https://doi.org/10.1016/j.eswa.2015.11.003Amiri, M., Nosratian, N.E., Jamshidi, A., Kazemi, A. (2008). Developing a new ELECTRE method with interval data in multiple attribute decision making problems. Journal of Applied Sciences, 8, 4017-4028. https://doi.org/10.3923/jas.2008.4017.4028Bahraminasab, M., Jahan, A. (2011). Material selection for femoral component of total knee replacement using comprehensive VIKOR. Materials & Design, 32, 4471-4477. https://doi.org/10.1016/j.matdes.2011.03.046Baradaran, V., Azarnia, S. (2013). An Approach to Test Consistency and Generate Weights from Grey Pairwise Matrices in Grey Analytical Hierarchy Process. Journal of Grey System, 25.Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056Cables, E., Lamata, M.T., Verdegay, J.L. (2018). FRIM-Fuzzy Reference Ideal Method in Multicriteria Decision Making. In Collan, M. & Kacprzyk, J. (Eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-60207-3_19Çakır, S. (2016). An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. Journal of Intelligent Manufacturing, 1-13. https://doi.org/10.1007/s10845-015-1189-3Celen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25, 185-208. https://doi.org/10.15388/Informatica.2014.10Celik, E., Erdogan, M., Gumus, A. (2016). An extended fuzzy TOPSIS-GRA method based on different separation measures for green logistics service provider selection. International Journal of Environmental Science and Technology, 13, 1377-1392. https://doi.org/10.1007/s13762-016-0977-4Dymova, L., Sevastjanov, P., Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems With Applications, 40, 4841-4847. https://doi.org/10.1016/j.eswa.2013.02.022Garca-Cascales, M.S., Lamata, M.T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56, 123-132. https://doi.org/10.1016/j.mcm.2011.12.022Hafezalkotob, A., Hafezalkotob, A. (2015). Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87, 949-959. https://doi.org/10.1016/j.matdes.2015.08.087Hafezalkotob, A., Hafezalkotob, A. (2016). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Industrial Engineering International, 13, 181-198. https://doi.org/10.1007/s40092-016-0176-4Hafezalkotob, A., Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196. https://doi.org/10.1016/j.engappai.2016.10.018Hafezalkotob, A., Hafezalkotob, A., Sayadi, M.K. (2016). Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling, 40, 1372-1386. https://doi.org/10.1016/j.apm.2015.07.019Hajiagha, S.H.R., Hashemi, S.S., Zavadskas, E.K., Akrami, H. (2012). Extensions of LINMAP model for multi criteria decision making with grey numbers. Technological and Economic Development of Economy, 18, 636-650. https://doi.org/10.3846/20294913.2012.740518Hazelrigg, G.A. (2003). Validation of engineering design alternative selection methods. Engineering Optimization, 35, 103-120. https://doi.org/10.1080/0305215031000097059Hu, J., Du, Y., Mo, H., Wei, D., Deng, Y. (2016). A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444, 73-85. https://doi.org/10.1016/j.physa.2015.09.028Huang, Y., Jiang, W. (2018). Extension of TOPSIS Method and its Application in Investment. Arabian Journal for Science and Engineering, 43, 693-705. https://doi.org/10.1007/s13369-017-2736-3Jahan, A. (2018). Developing WASPAS-RTB method for range target-based criteria: toward selection for robust design. Technological and Economic Development of Economy, 24, 1362-1387. https://doi.org/10.3846/20294913.2017.1295288Jahan, A., Bahraminasab, M., Edwards, K.L. (2012). A target-based normalization technique for materials selection. Materials & Design, 35, 647-654. https://doi.org/10.1016/j.matdes.2011.09.005Jahan, A., Edwards, K.L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. https://doi.org/10.1016/j.matdes.2012.12.072Jahan, A., Edwards, K.L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335-342. https://doi.org/10.1016/j.matdes.2014.09.022Jahan, A., Edwards, K.L., Bahraminasab, M. (2016). Multi-criteria decision analysis for supporting the selection of engineering materials in product design, Oxford, Butterworth-Heinemann.Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., Bahraminasab, M. (2011). A comprehensive VIKOR method for material selection. Materials & Design, 32, 1215-1221. https://doi.org/10.1016/j.matdes.2010.10.015Jahan, A., Zavadskas, E.K. (2018). ELECTRE-IDAT for design decision-making problems with interval data and target-based criteria. Soft Computing, 23, 129-143. https://doi.org/10.1007/s00500-018-3501-6Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Davoodi, A.R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49, 1137-1142. https://doi.org/10.1016/j.mcm.2008.07.009Jahanshahloo, G.R., Lotfi, F.H., Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375-1384. https://doi.org/10.1016/j.amc.2005.08.048Kasirian, M., Yusuff, R. (2013). An integration of a hybrid modified TOPSIS with a PGP model for the supplier selection with interdependent criteria. International Journal of Production Research, 51, 1037-1054. https://doi.org/10.1080/00207543.2012.663107Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260, 152-160. https://doi.org/10.1016/j.ejor.2016.11.052Liang, D., Xu, Z. (2017). The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Applied Soft Computing, 60, 167-179. https://doi.org/10.1016/j.asoc.2017.06.034Liao, H., Wu, X. (2019). DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega, 94. 102058. https://doi.org/10.1016/j.omega.2019.04.001Liu, H.C., You, J.X., Zhen, L., Fan, X.J. (2014). A novel hybrid multiple criteria decision making model for material selection with targetbased criteria. Materials & Design, 60, 380-390. https://doi.org/10.1016/j.matdes.2014.03.071Maghsoodi, A.I., Maghsoodi, A.I., Poursoltan, P., Antucheviciene, J., Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA-CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19, 1194-1210. https://doi.org/10.1016/j.acme.2019.06.010Milani, A.S., Shanian, A., Madoliat, R., Nemes, J.A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and Multidisciplinary Optimization, 29, 312-318. https://doi.org/10.1007/s00158-004-0473-1Peldschus, F. (2009). The analysis of the quality of the results obtained with the methods of multi-criteria decisions. Technological and Economic Development of Economy, 15, 580-592. https://doi.org/10.3846/1392-8619.2009.15.580-592Peldschus, F. (2018). Recent findings from numerical analysis in multi-criteria decision making. Technological and Economic Development of Economy, 24, 1695-1717. https://doi.org/10.3846/20294913.2017.1356761Perez, E.C., Lamata, M., Verdegay, J. (2016). RIM-Reference Ideal Method in Multicriteria Decision Making. Information Sciences, 337- 338, 1-10. https://doi.org/10.1016/j.ins.2015.12.011Sayadi, M.K., Heydari, M., Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33, 2257-2262. https://doi.org/10.1016/j.apm.2008.06.002Sen, P., Yang, J.B. (1998). MCDM and the Nature of Decision Making in Design, Springer. https://doi.org/10.1007/978-1-4471-3020-8_2Sevastianov, P. (2007). Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster- Shafer theory. Information Sciences, 177, 4645-4661. https://doi.org/10.1016/j.ins.2007.05.001Shanian, A., Savadogo, O. (2009). A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Systems With Applications, 36, 1362-1370. https://doi.org/10.1016/j.eswa.2007.11.052Shen, F., Ma, X., Li, Z., Xu, Z., Cai, D. (2018). An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences, 428, 105-119. https://doi.org/10.1016/j.ins.2017.10.045Shishank, S., Dekkers, R. (2013). Outsourcing: decision-making methods and criteria during design and engineering. Production Planning & Control, 24, 318-336. https://doi.org/10.1080/09537287.2011.648544Shouzhen, Z., Yao, X. (2018). A method based on TOPSIS and distance measures for hesitant fuzzy multiple attribute decision making. Technological and Economic Development of Economy, 24, 969-983. https://doi.org/10.3846/20294913.2016.1216472Stanujkic, D., Magdalinovic, N., Jovanovic, R., Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18, 331-363. https://doi.org/10.3846/20294913.2012.676996Suder, A., Kahraman, C. (2018). Multiattribute evaluation of organic and inorganic agricultural food investments using fuzzy TOPSIS. Technological and Economic Development of Economy, 24, 844-858. https://doi.org/10.3846/20294913.2016.1216905Tilstra, A.H., Backlund, P.B., Seepersad, C.C., Wood, K.L. (2015). Principles for designing products with flexibility for future evolution. International Journal of Mass Customisation, 5, 22-54. https://doi.org/10.1504/IJMASSC.2015.069597Tsaur, R.C. (2011) Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218, 4295-4304. https://doi.org/10.1016/j.amc.2011.10.001Turskis, Z., Zavadskas, E.K. (2010) A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21, 597-610. https://doi.org/10.15388/Informatica.2010.307Wang, Y.M., Luo, Y. (2009) On rank reversal in decision analysis. Mathematical and Computer Modelling, 49, 1221-1229. https://doi.org/10.1016/j.mcm.2008.06.019Ye, J. (2015) An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. Journal of Intelligent & Fuzzy Systems, 28, 247-255. https://doi.org/10.3233/IFS-141295Yue, Z. (2013) Group decision making with multi-attribute interval data. Information Fusion, 14, 551-561. https://doi.org/10.1016/j.inffus.2013.01.00

    Intuitionistic linguistic multi-attribute decision making algorithm based on integrated distance measure

    Get PDF
    This study aims to integrate the intuitionistic linguistic multi-attribute decision making (MADM) method which builds upon an integrated distance measure into supplier evaluation and selection problems. More specifically, an intuitionistic linguistic integrated distance measure based on ordered weighted averaging operator (OWA) and weighted average approach is presented and applied. The desirable characteristics and families of the developed distance operator are further explored. In addition, based on the proposed distance measure, a supplier selection problem for an automobile factory is used to test the practicality of its framework. The effectiveness and applicability of the presented framework for supplier selection are examined by carrying comparative analysis against the existing techniques of aggregation

    Supplier evaluation and selection in fuzzy environments: a review of MADM approaches

    Get PDF
    In past years, the multi-attribute decision-making (MADM) approaches have been extensively applied by researchers to the supplier evaluation and selection problem. Many of these studies were performed in an uncertain environment described by fuzzy sets. This study provides a review of applications of MADM approaches for evaluation and selection of suppliers in a fuzzy environment. To this aim, a total of 339 publications were examined, including papers in peer-reviewed journals and reputable conferences and also some book chapters over the period of 2001 to 2016. These publications were extracted from many online databases and classified in some categories and subcategories according to the MADM approaches, and then they were analysed based on the frequency of approaches, number of citations, year of publication, country of origin and publishing journals. The results of this study show that the AHP and TOPSIS methods are the most popular approaches. Moreover, China and Taiwan are the top countries in terms of number of publications and number of citations, respectively. The top three journals with highest number of publications were: Expert Systems with Applications, International Journal of Production Research and The International Journal of Advanced Manufacturing Technology

    Understanding location decisions of energy multinational enterprises within the European smart cities’ context: An integrated AHP and extended fuzzy linguistic TOPSIS method

    Get PDF
    Becoming a smart city is one of the top priorities in the urban agenda of many European cities. Among the various strategies in the transition path, local governments seek to bring innovation to their cities by encouraging multinational enterprises to deploy their green energy services and products in their municipalities. Knowing how to attract these enterprises implies that political leaders understand the multi-criteria decision problem that the energy sector enterprises face when deciding whether to expand to one city or another. To this end, the purpose of this study is to design a new manageable and controllable framework oriented to European cities’ public managers, based on the assessment of criteria and sub-criteria governing the strategic location decision made by these enterprises. A decision support framework is developed based on the AHP technique combined with an extended version of the hesitant fuzzy linguistic TOPSIS method. The main results indicate the higher relative importance of government policies, such as degree of transparency or bureaucracy level, as compared to market conditions or economic aspects of the city’s host country. These results can be great assets to current European leaders, they show the feasibility of the method and open up the possibility to replicate the proposed framework to other sectors or geographical areas.The authors acknowledge the support from the European Union “Horizon 2020 Research and Innovation Programme” under the grant agreements No 731297. Also, this research has been partially supported by the INVITE Research Project (TIN2016-80049-C2-1-R and TIN2016-80049-C2-2-R (AEI/FEDER, UE)), funded by the Spanish Ministry of Science and Information Technology.Peer ReviewedPostprint (published version

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches
    corecore