5,618 research outputs found

    Maintenance of Smart Buildings using Fault Trees

    Get PDF
    Timely maintenance is an important means of increasing system dependability and life span. Fault Maintenance trees (FMTs) are an innovative framework incorporating both maintenance strategies and degradation models and serve as a good planning platform for balancing total costs (operational and maintenance) with dependability of a system. In this work, we apply the FMT formalism to a {Smart Building} application and propose a framework that efficiently encodes the FMT into Continuous Time Markov Chains. This allows us to obtain system dependability metrics such as system reliability and mean time to failure, as well as costs of maintenance and failures over time, for different maintenance policies. We illustrate the pertinence of our approach by evaluating various dependability metrics and maintenance strategies of a Heating, Ventilation and Air-Conditioning system.Comment: arXiv admin note: substantial text overlap with arXiv:1801.0426

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Can Threshold-Based Sensor Alerts be Analysed to Detect Faults in a District Heating Network?

    Get PDF
    Older IoT “smart sensors” create system alerts from threshold rules on reading values. These simple thresholds are not very flexible to changes in the network. Due to the large number of false positives generated, these alerts are often ignored by network operators. Current state-of-the-art analytical models typically create alerts using raw sensor readings as the primary input. However, as greater numbers of sensors are being deployed, the growth in the number of readings that must be processed becomes problematic. The number of analytic models deployed to each of these systems is also increasing as analysis is broadened. This study aims to investigate if alerts created using threshold rules can be used to predict network faults. By using threshold-based alerts instead of raw continuous readings, the amount of data that the analytic models need to process is greatly reduced. The study was done using alert data from a European city’s District Heating network. The alerts were generated by “smart sensors” that used threshold rules. Analytic models were tested to find the most accurate prediction of a network fault. Work order (maintenance) records were used as the target variable indicating a fault had occurred at the same time and location as the alert was active. The target variable was highly imbalanced (96:4) with a minority class being when a Work Order was required. The decision tree model developed used misclassification costs to achieve a reasonable accuracy with a trade-off between precision (.63) and recall (.56). The sparse nature of the alert data may be to blame for this result. The results show promise that this method could work well on datasets with better sensor coverage

    Visualised inspection system for monitoring environmental anomalies during daily operation and maintenance

    Get PDF
    PurposeVisual inspection and human judgement form the cornerstone of daily operations and maintenance (O&M) services activities carried out by facility managers nowadays. Recent advances in technologies such as building information modelling (BIM), distributed sensor networks, augmented reality (AR) technologies and digital twins present an immense opportunity to radically improve the way daily O&M is conducted. This paper aims to describe the development of an AR-supported automated environmental anomaly detection and fault isolation method to assist facility managers in addressing problems that affect building occupants’ thermal comfort.Design/methodology/approachThe developed system focusses on the detection of environmental anomalies related to the thermal comfort of occupants within a building. The performance of three anomaly detection algorithms in terms of their ability to detect indoor temperature anomalies is compared. Based on the fault tree analysis (FTA), a decision-making tree is developed to assist facility management (FM) professionals in identifying corresponding failed assets according to the detected anomalous symptoms. The AR system facilitates easy maintenance by highlighting the failed assets hidden behind walls/ceilings on site to the maintenance personnel. The system can thus provide enhanced support to facility managers in their daily O&M activities such as inspection, recording, communication and verification.FindingsTaking the indoor temperature inspection as an example, the case study demonstrates that the O&M management process can be improved using the proposed AR-enhanced inspection system. Comparative analysis of different anomaly detection algorithms reveals that the binary segmentation-based change point detection is effective and efficient in identifying temperature anomalies. The decision-making tree supported by FTA helps formalise the linkage between temperature issues and the corresponding failed assets. Finally, the AR-based model enhanced the maintenance process by visualising and highlighting the hidden failed assets to the maintenance personnel on site.Originality/valueThe originality lies in bringing together the advances in augmented reality, digital twins and data-driven decision-making to support the daily O&M management activities. In particular, the paper presents a novel binary segmentation-based change point detection for identifying temperature anomalous symptoms, a decision-making tree for matching the symptoms to the failed assets, and an AR system for visualising those assets with related information.EPSRC, Innovate U

    Big Data in the construction industry: A review of present status, opportunities, and future trends

    Get PDF
    © 2016 Elsevier Ltd The ability to process large amounts of data and to extract useful insights from data has revolutionised society. This phenomenon—dubbed as Big Data—has applications for a wide assortment of industries, including the construction industry. The construction industry already deals with large volumes of heterogeneous data; which is expected to increase exponentially as technologies such as sensor networks and the Internet of Things are commoditised. In this paper, we present a detailed survey of the literature, investigating the application of Big Data techniques in the construction industry. We reviewed related works published in the databases of American Association of Civil Engineers (ASCE), Institute of Electrical and Electronics Engineers (IEEE), Association of Computing Machinery (ACM), and Elsevier Science Direct Digital Library. While the application of data analytics in the construction industry is not new, the adoption of Big Data technologies in this industry remains at a nascent stage and lags the broad uptake of these technologies in other fields. To the best of our knowledge, there is currently no comprehensive survey of Big Data techniques in the context of the construction industry. This paper fills the void and presents a wide-ranging interdisciplinary review of literature of fields such as statistics, data mining and warehousing, machine learning, and Big Data Analytics in the context of the construction industry. We discuss the current state of adoption of Big Data in the construction industry and discuss the future potential of such technologies across the multiple domain-specific sub-areas of the construction industry. We also propose open issues and directions for future work along with potential pitfalls associated with Big Data adoption in the industry

    Smart City Digital Twin Framework for Real-Time Multi-Data Integration and Wide Public Distribution

    Full text link
    Digital Twins are digital replica of real entities and are becoming fundamental tools to monitor and control the status of entities, predict their future evolutions, and simulate alternative scenarios to understand the impact of changes. Thanks to the large deployment of sensors, with the increasing information it is possible to build accurate reproductions of urban environments including structural data and real-time information. Such solutions help city councils and decision makers to face challenges in urban development and improve the citizen quality of life, by ana-lysing the actual conditions, evaluating in advance through simulations and what-if analysis the outcomes of infrastructural or political chang-es, or predicting the effects of humans and/or of natural events. Snap4City Smart City Digital Twin framework is capable to respond to the requirements identified in the literature and by the international forums. Differently from other solutions, the proposed architecture provides an integrated solution for data gathering, indexing, computing and information distribution offered by the Snap4City IoT platform, therefore realizing a continuously updated Digital Twin. 3D building models, road networks, IoT devices, WoT Entities, point of interests, routes, paths, etc., as well as results from data analytical processes for traffic density reconstruction, pollutant dispersion, predictions of any kind, what-if analysis, etc., are all integrated into an accessible web interface, to support the citizens participation in the city decision processes. What-If analysis to let the user performs simulations and observe possible outcomes. As case of study, the Digital Twin of the city of Florence (Italy) is presented. Snap4City platform, is released as open-source, and made available through GitHub and as docker compose
    • …
    corecore