144,623 research outputs found

    Towards engineering ontologies for cognitive profiling of agents on the semantic web

    Get PDF
    Research shows that most agent-based collaborations suffer from lack of flexibility. This is due to the fact that most agent-based applications assume pre-defined knowledge of agents’ capabilities and/or neglect basic cognitive and interactional requirements in multi-agent collaboration. The highlight of this paper is that it brings cognitive models (inspired from cognitive sciences and HCI) proposing architectural and knowledge-based requirements for agents to structure ontological models for cognitive profiling in order to increase cognitive awareness between themselves, which in turn promotes flexibility, reusability and predictability of agent behavior; thus contributing towards minimizing cognitive overload incurred on humans. The semantic web is used as an action mediating space, where shared knowledge base in the form of ontological models provides affordances for improving cognitive awareness

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    Analysing Mutual Exclusion using Process Algebra with Signals

    Get PDF
    In contrast to common belief, the Calculus of Communicating Systems (CCS) and similar process algebras lack the expressive power to accurately capture mutual exclusion protocols without enriching the language with fairness assumptions. Adding a fairness assumption to implement a mutual exclusion protocol seems counter-intuitive. We employ a signalling operator, which can be combined with CCS, or other process calculi, and show that this minimal extension is expressive enough to model mutual exclusion: we confirm the correctness of Peterson's mutual exclusion algorithm for two processes, as well as Lamport's bakery algorithm, under reasonable assumptions on the underlying memory model. The correctness of Peterson's algorithm for more than two processes requires stronger, less realistic assumptions on the underlying memory model.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004

    From Event-B models to code: sensing, actuating, and the environment

    No full text
    The Event-B method is a formal approach for modelling systems in safety-, and business-critical, domains. We focus, in this paper, on multi-tasking, embedded control systems. Initially, system specification takes place at a high level of abstraction; detail is added in refinement steps as the development proceeds toward implementation. In previous work, we presented an approach for generating code, for concurrent programs, from Event-B. Translators generate program code for tasks that access data in a safe way, using shared objects. We did not distinguish between tasks of the environment and those of the controller. The work described in this paper offers improved modelling and code generation support, where we separate the environment from the controller. The events in the system can participate in actuating or sensing roles. In the resulting code, sensing and actuation can be simulated using a form of subroutine call; or additional information can be provided to allow a task to read/write directly from/to a specfied memory location

    Shared Event Composition/Decomposition in Event-B

    No full text
    The construction of specifications is often a combination of smaller sub-components. Composition and decomposition are techniques that support reuse and allow us to formally combine sub-components through refinement steps while reusing their properties. Sub-components can result from a design or architectural goal and a refinement framework should allow further parallel development over the sub-components. We propose the definition of composition and decomposition in the Event-B formalism following a shared event approach where sub-components interact via synchronisation over shared events and shared states are not allow. We define the necessary proof obligations to ensure a valid composition or decomposition. We also show that shared event composition preserves refinement proofs for sub-components, that is, in order to maintain refinement of compositions, it is sufficient to prove refinement between corresponding subcomponents. A case study applying these two techniques is illustrated using Rodin, the Event-B toolset
    • …
    corecore