374 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Process-aware SCADA traffic monitoring:A local approach

    Get PDF

    Multi-Attribute SCADA-Specific Intrusion Detection System for Power Networks

    Get PDF
    The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach

    Promoting Increased Energy Efficiency in Smart Grids by Empowerment of Customers

    Get PDF

    Analysis of new control applications

    Get PDF
    This document reports the results of the activities performed during the first year of the CRUTIAL project, within the Work Package 1 "Identification and description of Control System Scenarios". It represents the outcome of the analysis of new control applications in the Power System and the identification of critical control system scenarios to be explored by the CRUTIAL project

    On specification-based cyber-attack detection in smart grids

    Get PDF
    The transformation of power grids into intelligent cyber-physical systems brings numerous benefits, but also significantly increases the surface for cyber-attacks, demanding appropriate countermeasures. However, the development, validation, and testing of data-driven countermeasures against cyber-attacks, such as machine learning-based detection approaches, lack important data from real-world cyber incidents. Unlike attack data from real-world cyber incidents, infrastructure knowledge and standards are accessible through expert and domain knowledge. Our proposed approach uses domain knowledge to define the behavior of a smart grid under non-attack conditions and detect attack patterns and anomalies. Using a graph-based specification formalism, we combine cross-domain knowledge that enables the generation of whitelisting rules not only for statically defined protocol fields but also for communication flows and technical operation boundaries. Finally, we evaluate our specification-based intrusion detection system against various attack scenarios and assess detection quality and performance. In particular, we investigate a data manipulation attack in a future-orientated use case of an IEC 60870-based SCADA system that controls distributed energy resources in the distribution grid. Our approach can detect severe data manipulation attacks with high accuracy in a timely and reliable manner

    A review of cyber security risk assessment methods for SCADA systems

    Get PDF
    This paper reviews the state of the art in cyber security risk assessment of Supervisory Control and Data Acquisition (SCADA) systems. We select and in-detail examine twenty-four risk assessment methods developed for or applied in the context of a SCADA system. We describe the essence of the methods and then analyse them in terms of aim; application domain; the stages of risk management addressed; key risk management concepts covered; impact measurement; sources of probabilistic data; evaluation and tool support. Based on the analysis, we suggest an intuitive scheme for the categorisation of cyber security risk assessment methods for SCADA systems. We also outline five research challenges facing the domain and point out the approaches that might be taken

    Defending the SCADA Network Controlling the Electrical Grid from Advanced Persistent Threats

    Get PDF
    RÉSUMÉ Les civilisations modernes sont dépendantes des technologies de l'information et des communications. Par ce fait, elles requièrent une alimentation constante en électricité pour assurer leur prospérité. Un siècle de travaux acharnés par des ingénieurs en électronique de puissance permet de garantir la fiabilité des réseaux électriques. Un des outils pour arriver à cette fin est une augmentation de l'automatisation et du contrôle à distance des réseaux électriques. Cette technologie permet aux contrôleurs qui opèrent le réseau électrique d'ajuster automatiquement des paramètres opérationnels pour faire face aux contraintes extérieures au fur et à mesure que ces contraintes évoluent. Par exemple, une augmentation de la demande suite à une vague de froid va automatiquement entraîner une augmentation de l'approvisionnement par l'envoi de commandes à distance pour ouvrir les vannes à la centrale hydroélectrique et faire tourner les turbines plus rapidement. Ceci garanti que le réseau électrique fonctionne toujours à pleine capacité et livre l'énergie électrique avec fiabilité, sans égard aux conditions externes. Paradoxalement, les gains offerts par les systèmes automatisés ont introduit un risque jusqu'alors inconnu à la fiabilité du réseau électrique : les cyber attaques. Pour permettre l'automatisation, les opérateurs de réseaux électriques se sont tournés vers la technologie d'acquisition de données et de supervision, mieux connu sous le nom de système SCADA. De nos jours, la technologie SCADA se base sur du matériel et des logiciels commerciaux comme les communications TCP/IP via Ethernet ou comme le système d'exploitation Windows. Ceci permet aux entités malicieuses de faire usage de leur savoir concernant les techniques offensives qu'ils ont développé pour attaquer les systèmes traditionnels faisant usage de ces technologies. La majorité de ces entités sont des menaces diffuses cherchant principalement à acquérir de la capacité de stockage servant à héberger du contenu illégal, du temps machine pour envoyer du spam ou des mots de passe pour permettre la fraude. Cet objectif est plus facile à atteindre en attaquant des ordinateurs personnels plutôt que des machines d'un réseau SCADA. Toutefois, certains acteurs ciblent délibérément les réseaux SCADA puisque ceux-ci ont le potentiel de causer des dégâts dans le monde physique. Ces acteurs recherchent agressivement les vulnérabilités et persévèrent dans leurs attaques, même face à une amélioration de la capacité défensive du réseau. Ces acteurs se font affubler le qualificatif de menaces persistantes avancées ou APTs. À cause de cette volonté de cibler un réseau spécifique, il est plus difficile de détourner ces attaquants vers d'autres victimes. Si nous souhaitons empêcher ces APTs de s'attaquer aux réseaux SCADA qui contrôlent l'infrastructure critique, nous devons élaborer une stratégie qui ne repose pas sur la réduction complète des vulnérabilités. Un bon nombre de contraintes opérationnelles, comme le mode d'opération 24/7 qui rend la tenue de périodes de maintenance difficile, garantissent qu'il y aura toujours au moins une vulnérabilité potentiellement exploitable par un attaquant. Dans ce contexte, l'objectif de ce projet de recherche est d'aider les opérateurs de réseaux électriques à défendre leur réseau SCADA contre les menaces persistantes avancées. Pour atteindre cet objectif, nous visons à mieux comprendre comment le comportement des menaces persistantes avancées se manifeste dans un réseau SCADA et à développer, en se basant sur des preuves expérimentales, de nouveaux outils et techniques pour se défendre contre les comportements attendus. En analysant les travaux antérieurs, on reconnaît que la vraie nature d'un réseau SCADA est de servir de boucle de contrôle pour le réseau électrique. Une conséquence directe est que tout attaquant qui obtient accès au réseau SCADA peut altérer l'état du réseau électrique à sa guise. Si un APT voudrait poursuivre ce but, la recherche actuelle en sécurité des réseau SCADA ne parviendrait pas à prévenir cette attaque puisqu'elle n'est pas orientée vers stopper les attaquants hautement qualifiés. Ceci rend les réseaux SCADA invitants pour les états engagés dans une compétition agressive. Malgré cela, aucun cyber incident majeur causant des dégâts physiques n'est répertorié à ce jour. En se basant sur cette observation, nous avons développé un modèle d'attaque pour le comportement d'un APT dans un réseau SCADA qui n'implique pas nécessairement des dommages massifs dans le monde physique. Ainsi, nous avons introduit le scénario d'attaque par trou d'aiguilles, notre première contribution majeure, dans lequel un attaquant cause de petits dégâts qui s'accumulent sur une longue période pour éviter d'être détecté. À partir de ce scénario, nous avons développé une stratégie consistant à augmenter la capacité de surveillance, c'est-à-dire de renforcer la puissance de la détection, pour prévenir l'utilisation de ce scénario d'attaque par les APTs. En se basant sur notre intuition que la détection d'intrusion par anomalie sera particulièrement efficace dans le contexte hautement régulier d'un réseau SCADA, l'utilisation de cette technique est favorisée. Pour tester les capacités de notre détecteur, nous devons adresser le problème du manque d'infrastructures expérimentales adaptées à la recherche en sécurité des réseaux SCADA. Une revue de la littérature montre que les approches expérimentales courantes ne sont pas appropriées pour générer des données réseau avec une haute fidélité. Pour résoudre ce problème, nous avons introduit le concept du Carré de sable ICS, notre deuxième contribution majeure, qui utilise une approche hybride combinant la haute fidélité des résultats de l'émulation et le facteur d'échelle et le faible coût de la simulation pour créer un montage expérimental capable de produire des données réseau de haute fidélité, adaptées à l'usage expérimental. Finalement, nous avons été en mesure de tester une implémentation d'un système de détection d'intrusion par anomalies, notre troisième contribution majeure, en utilisant le Carré de sable ICS. En utilisant des caractéristiques simples, il est possible de détecter du trafic de commandement et contrôle dans un réseau SCADA, ce qui force les attaquant à utiliser pour leurs opérations routinières de maintenance de complexes canaux cachés dont la bande passante est limitée. Ceci atteste de la validité de notre intuition selon laquelle la détection par anomalie est particulièrement efficace dans les réseaux SCADA, revitalisant par le fait même une technique de défense qui a longtemps été délaissée à cause de sa piètre performance dans les réseaux corporatifs typiques. La somme de ces contributions représente une amélioration significative de l'état de la défense des réseaux SCADA contre les menaces persistantes avancées, incluant les menaces en provenance des services de renseignement étatiques. Ceci contribue à une augmentation de la fiabilité des infrastructure critiques, et des réseaux électriques en particulier, face à un intérêt grandissant de la part des cyber attaquants.----------ABSTRACT Modern civilization, with its dependency on information technology, require a steady supply of electrical power to prosper. A century of relentless work by power engineers has ensured that the power grid is reliable. One of tools they used to achieve that goal is increased automation and remote control of the electrical grid. This technology allows the controllers supervising the power grid to automatically adjust operational parameters to meet external constraints as they evolve. A new surge in demand from a cold night will trigger an automated increase in supply. Remote control commands will be sent to open sluice gates at the hydroelectric plant to make turbines spin faster and generate more power. This ensures the electric grid always functions at peak efficiency and reliably deliver power no matter what the external conditions are. Paradoxically, the gains provided by the automated systems invited a previously unknown risk to the reliability of power delivery: cyber attacks. In order to achieve automation, utility operators have turned to Supervisory Control and Data Acquisition, or SCADA, technology. In this era, SCADA technology is built on top of commercial off the shelf hardware and software such as TCP/IP over Ethernet networks and Windows operating system. This enables malicious entities to leverage their pre-existing knowledge of offensive techniques known to work on these platform to attack the SCADA networks controlling critical infrastructure. Of those entities, the majority are unfocused attackers searching for commodity assets such as storage capacity to store illegal materials, processing power to send spam or credentials to enable fraud. However, some actors are deliberatively targeting the SCADA networks for their ability to cause damage in the physical realm. These actors aggressively search for vulnerabilities and are stubborn in the face of an increase in defensive measures and are dubbed advanced persistent threats, or APTs. As such, it is more difficult to turn them away. If we want to prevent these advanced persistent threats from preying on the SCADA networks controlling our critical infrastructure, we need to devise a defense that does not rely on completely removing vulnerabilities. A number of operational constraints, such as the need to operate 24/7 precluding the opening of maintenance windows, ensure that there will always be a vulnerability that can be exploited by an attacker. In that light, the goal of this research project is to is to help power grid operators defend their SCADA networks against advanced persistent threats. To achieve that goal we aim to better understand how the behaviour of advanced persistent threats will manifest itself in a SCADA network and to develop, based on evidence derived from experiments, new tools and techniques to defeat the expected behaviour. By analyzing prior work, we recognize that the true nature of SCADA networks is to serve as a basic control loop for the electric grid. A direct consequence is that any attacker gaining access to the SCADA network could send the grid into any state he wishes. We also showed that, should advanced persistent threats attempt to pursue this goal, current research in SCADA security would not provide significant help, not being focused on preventing the exploitation of SCADA network by skilled attackers. This makes SCADA networks attractive to nation states engaged in aggressively competitive behaviour. However, no evidence of major cyber incidents causing physical damage is forthcoming. From that observation, we developed an attacker model for advanced persistent threat behaviour in SCADA networks that did not necessarily involve causing massive physical damage. So, we introduced the pinprick attack scenario, our first major contribution, in which an attacker causes small amounts of damage that accumulate over time in order to stay under the radar. From this scenario, we developed a strategy of increasing the capability of surveillance, or boosting the radar so to speak, in order to prevent advanced persistent threats from using this scenario. The use of anomaly-based intrusion detection was favored based on our intuition that it would prove very effective in the highly regimented context of SCADA networks. To test the capability of our detector, we needed to address the lack of experimental infrastructure suitable for network security. However, a study of the literature shows that current experimental approaches are not appropriate to generate high fidelity network data. To solve this problem, we introduced the ICS sandbox concept, our second major contribution, that used a hybrid approach combining the high fidelity results of emulation and the scalability and cost reduction of simulation to create an experimental setup able to produce high fidelity network data sets for experimentation. Finally, we were able to test an implementation of anomaly-based intrusion detection, our third major contribution, using the ICS sandbox. Using only simple features, it was possible to detect command and control traffic in a SCADA network and push attackers to use complex covert channels with limited bandwidth to perform their routine maintenance operations. This attests to the validity of our intuition that anomaly-based detection is particularly effective in SCADA network, revivifying a defensive technique that suffers from poor performance in typical corporate networks. The sum of these contributions represent a significant improvement in the defense of SCADA networks against advanced persistent threats, including threats from nation state sponsored intelligence agencies. This contributes to the increased reliability of critical infrastructure, and of the electrical grid in particular, in the face of an increasing interest by cyber attackers

    Towards the Smart Grid: Substation Automation Architecture and Technologies

    Get PDF

    ICT aspects of power systems and their security

    Get PDF
    This report provides a deep description of four complex Attack Scenarios that have as final goal to produce damage to the Electric Power Transmission System. The details about protocols used, vulnerabilities, devices etc. have been for obvious reasons hidden, and the ones presented have to be understood as mere (even if realistic) simplified versions of possible power systems.JRC.DG.G.6-Security technology assessmen
    corecore