177,904 research outputs found

    Quantitative Genetics and Functional-Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    Full text link
    Background and Aims: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods: The GreenLab model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions: By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits - such as cob weight - and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GreenLab maize model. The paper discusses the potentials of GreenLab to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand

    Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm

    Get PDF
    Geo-referenced information on crop production that is both spatially- and temporally-dense would be useful for management in precision agriculture (PA). Crop yield monitors provide spatially but not temporally dense information. Crop growth simulation modelling can provide temporal density, but traditionally fail on the spatial issue. The research described was motivated by the challenge of satisfying both the spatial and temporal data needs of PA. The methods presented depart from current crop modelling within PA by introducing meta-modelling in combination with inverse modelling to estimate site-specific soil properties. The soil properties are used to predict spatially- and temporally-dense crop yields. An inverse meta-model was derived from the agricultural production simulator (APSIM) using neural networks to estimate soil available water capacity (AWC) from available yield data. Maps of AWC with a resolution of 10 m were produced across a dryland grain farm in Australia. For certain years and fields, the estimates were useful for yield prediction with APSIM and multiple regression, whereas for others the results were disappointing. The estimates contain ‘implicit information’ about climate interactions with soil, crop and landscape that needs to be identified. Improvement of the meta-model with more AWC scenarios, more years of yield data, inclusion of additional variables and accounting for uncertainty are discussed. We concluded that it is worthwhile to pursue this approach as an efficient way of extracting soil physical information that exists within crop yield maps to create spatially- and temporally-dense dataset

    Evolution of complex flowering strategies: an age- and size-structured integral projection model

    Get PDF
    We explore the evolution of delayed age- and size-dependent flowering in the monocarpic perennial Carlina vulgaris, by extending the recently developed integral projection approach to include demographic rates that depend on size and age. The parameterized model has excellent descriptive properties both in terms of the population size and in terms of the distributions of sizes within each age class. In Carlina the probability of flowering depends on both plant size and age. We use the parameterized model to predict this relationship, using the evolutionarily stable strategy (ESS) approach. Despite accurately predicting the mean size of flowering individuals, the model predicts a step-function relationship between the probability of flowering and plant size, which has no age component. When the variance of the flowering-threshold distribution is constrained to the observed value, the ESS flowering function contains an age component, but underpredicts the mean flowering size. An analytical approximation is used to explore the effect of variation in the flowering strategy on the ESS predictions. Elasticity analysis is used to partition the agespecific contributions to the finite rate of increase (u) of the survival-growth and fecundity components of the model. We calculate the adaptive landscape that defines the ESS and generate a fitness landscape for invading phenotypes in the presence of the observed flowering strategy. The implications of these results for the patterns of genetic diversity in the flowering strategy and for testing evolutionary models are discussed. Results proving the existence of a dominant eigenvalue and its associated eigenvectors in general size- and age-dependent integral projection models are presented

    Computational and mathematical modelling of plant species interactions in a harsh climate

    Get PDF
    This thesis will consider the following assumptions which are based on a few insights about the artic climate: (1)the artic climate can be characterised by a growing season called summer and a dormat season called winter (2)in the summer season growing conditions are reasonably favourable and species are more likely to compete for plentiful resources (3)in the winter season there would be no further growth and the plant populations would instead by subjected to fierce weather events such as storms which is more likely to lead to the destruction of some or all of the biomass. Under these assumptions, is it possible to find those change in the environment that might cause mutualism (see section 1.9.2) from competition (see section 1.9.1) to change? The primary aim of this thesis to to provide a prototype simulation of growth of two plant species in the artic that: (1)take account of different models for summer and winter seasons (2)permits the effects of changing climate to be seen on each type of plant species interaction

    Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach

    Get PDF
    We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters

    A model for water uptake by plant roots.

    Get PDF
    We present a model for water uptake by plant roots from unsaturated soil. The model includes the simultaneous flow of water inside the root network and in the soil. It is constructed by considering first the water uptake by a single root, and then using the parameterized results thereby obtained to build a model for water uptake by the developing root network. We focus our model on annual plants, in particular the model will be applicable to commercial monocultures like maize, wheat, etc. The model is solved numerically, and the results are compared with approximate analytic solutions. The model predicts that as a result of water uptake by plant roots, dry and wet zones will develop in the soil. The wet zone is located near the surface of the soil and the depth of it is determined by a balance between rainfall and the rate of water uptake. The dry zone develops directly beneath the wet zone because the influence of the rainfall at the soil surface does not reach this region, due to the nonlinear nature of the water flow in the partially saturated soil. We develop approximate analytic expressions for the depth of the wet zone and discuss briefly its ecological significance for the plant. Using this model we also address the question of where water uptake sites are concentrated in the root system. The model indicates that the regions near the base of the root system (i.e. close to the ground surface) and near the root tips will take up more water than the middle region of the root system, again due to the highly nonlinear nature of water flow in the soil

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
    • …
    corecore