2,549 research outputs found

    Fractional-order modelling and optimal control of cholera transmission

    Get PDF
    A Caputo-type fractional-order mathematical model for “metapopulation cholera transmission” was recently proposed in [Chaos Solitons Fractals 117 (2018), 37–49]. A sensitivity analysis of that model is done here to show the accuracy relevance of parameter estimation. Then, a fractional optimal control (FOC) problem is formulated and numerically solved. A cost-effectiveness analysis is performed to assess the relevance of studied control measures. Moreover, such analysis allows us to assess the cost and effectiveness of the control measures during intervention. We conclude that the FOC system is more effective only in part of the time interval. For this reason, we propose a system where the derivative order varies along the time interval, being fractional or classical when more advantageous. Such variable-order fractional model, that we call a FractInt system, shows to be the most effective in the control of the disease.publishe

    Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis

    Get PDF
    Schistosomiasis is a parasitic infection that is widespread in sub-Saharan Africa, where it represents a major health problem. We study the drivers of its geographical distribution in Senegal via a spatially explicit network model accounting for epidemiological dynamics driven by local socioeconomic and environmental conditions, and human mobility. The model is parameterized by tapping several available geodatabases and a large dataset of mobile phone traces. It reliably reproduces the observed spatial patterns of regional schistosomiasis prevalence throughout the country, provided that spatial heterogeneity and human mobility are suitably accounted for. Specifically, a fine-grained description of the socioeconomic and environmental heterogeneities involved in local disease transmission is crucial to capturing the spatial variability of disease prevalence, while the inclusion of human mobility significantly improves the explanatory power of the model. Concerning human movement, we find that moderate mobility may reduce disease prevalence, whereas either high or low mobility may result in increased prevalence of infection. The effects of control strategies based on exposure and contamination reduction via improved access to safe water or educational campaigns are also analyzed. To our knowledge, this represents the first application of an integrative schistosomiasis transmission model at a whole-country scale

    Modeling and Optimization of Dynamical Systems in Epidemiology using Sparse Grid Interpolation

    Get PDF
    Infectious diseases pose a perpetual threat across the globe, devastating communities, and straining public health resources to their limit. The ease and speed of modern communications and transportation networks means policy makers are often playing catch-up to nascent epidemics, formulating critical, yet hasty, responses with insufficient, possibly inaccurate, information. In light of these difficulties, it is crucial to first understand the causes of a disease, then to predict its course, and finally to develop ways of controlling it. Mathematical modeling provides a methodical, in silico solution to all of these challenges, as we explore in this work. We accomplish these tasks with the aid of a surrogate modeling technique known as sparse grid interpolation, which approximates dynamical systems using a compact polynomial representation. Our contributions to the disease modeling community are encapsulated in the following endeavors. We first explore transmission and recovery mechanisms for disease eradication, identifying a relationship between the reproductive potential of a disease and the maximum allowable disease burden. We then conduct a comparative computational study to improve simulation fits to existing case data by exploiting the approximation properties of sparse grid interpolants both on the global and local levels. Finally, we solve a joint optimization problem of periodically selecting field sensors and deploying public health interventions to progressively enhance the understanding of a metapopulation-based infectious disease system using a robust model predictive control scheme

    Geographical perspectives on epidemic transmission of cholera in Haiti, October 2010 through March 2013

    Get PDF
    The current epidemic of El Tor cholera in the Caribbean republic of Haiti is one of the largest single outbreaks of the disease ever recorded. The prospects are that the epidemic will continue to present challenges to workers in public health medicine, epidemiology and allied fields in the social sciences for years to come. This article introduces geographers to the environmental context of the Haiti cholera epidemic, the principal data sources available to analyze the occurrence of the epidemic, and evidence regarding its geographical origins and dispersal during the first thirty months of the epidemic, October 2010–March 2013. Using weekly case data collated by the Haitian Ministère de la Santé Publique et de la Population (MSPP), techniques of time series analysis are used to examine inter- and intra-departmental patterns of cholera activity. Our analysis demonstrates a pronounced lag structure to the spatial development of the epidemic (Artibonite and northern departments Ouest and metropolitan Port-au-Prince southern departments). Observed variations in levels of epidemiological integration, both within and between departments, provide new perspectives on the spatio-temporal evolution of the epidemic to its March 2013 pattern

    Optimal Control Problem for Cholera Disease and Cost-Effectiveness Analysis

    Get PDF
    Cholera is a disease that continues to be a threat to public health globally and is an indicator of inequity and lack of social development in countries. For this reason, strategies for its control need to be investigated. In this work, an optimal control problem related to cholera disease was formulated by introducing personal protection, drug treatment and water sanitation as control strategies. First, the existence and characterization of controls to minimize the performance index or cost function was proved by using classic control theory. Then, the theoretical results were validated with numerical experiments by using data reported in the literature. Finally, the effectiveness and efficiency of the proposed controls were determined through a cost-effectiveness analysis. The results showed that the use of the three controls simultaneously is the cheapest and most effective strategy to control the disease

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    Threats to groundwater supplies from contamination in Sierra Leone, with special reference to Ebola care facilities

    Get PDF
    The outbreak of Ebola virus disease in West Africa in 2014 is the worst single outbreak recorded, and has resulted in more fatalities than all previous outbreaks combined. This outbreak has resulted in a large humanitarian effort to build new health care facilities, with associated water supplies. Although Ebola is not a water-borne disease, care facilities for Ebola patients may become sources of outbreaks of other, water-borne, diseases spread through shallow groundwater from hazard sources such as open defecation, latrines, waste dumps and burial sites to water supplies. The focus of this rapid desk study is to assess from existing literature the evidence for sub-surface transport of pathogens in the context of the hydrogeological and socio-economic environment of Sierra Leone. In particular, the outputs are to advise on the robustness of the evidence for an effective single minimum distance for lateral spacing between hazard sources and water supply, and provide recommendations for protecting water supplies for care facilities as well as other private and public water supplies in this region. Preliminary conclusions were: Considering the climate (heavy intense rainfall for 8 months), the hydrogeological conditions (prevalent shallow and rapidly fluctuating water tables, permeable tropical soils), the pervasive and widespread sources of hazards (very low improved sanitation coverage), and the widespread use of highly vulnerable water points there is little evidence that simply using an arbitrary lateral spacing between hazard sources and water point of 30 – 50 m would provide effective protection for groundwater points. An alternative framework that considers vertical as well as lateral separation and the integrity of the construction and casing of the deeper water points is recommended to protect water supplies from contamination by pathogens. The shallow aquifer, accessed by wells and springs, must be treated as highly vulnerable to pollution, both from diffuse sources and from localised sources. Diffuse pollution of groundwater from surface-deposited wastes including human excreta is likely to be at least as important as pollution from pit latrines and other point sources, given the low sanitation coverage in Sierra Leone. Even though conditions are not optimal for pathogen survival (e.g. temperatures of >25° C), given the very highly permeable shallow tropical soil zone, and the high potential surface and subsurface loading of pathogens, it is likely that shallow water sources are at risk from pathogen pollution, particularly during periods of intense rainfall and high water table conditions. Extending improved sanitation must be a high priority, in conjunction with improved vertical separation between hazard sources and water points, in order to reduce environmental contamination and provide a basis for improved public health. We recommend that risk assessments of water points are undertaken for health care facilities as soon as possible including: detailed sanitary inspections of water points within the 30 – 50 m radius suggested by the Ministry of Water Resource; assessments of the construction and integrity of the water points; a wider survey of contaminant load and rapid surface / sub surface transit routes within a wider 200 m radius of water points. Analysis of key water quality parameters and monitoring of water levels should be undertaken at each water point in parallel with the risk assessments. The translation of policy on water, sanitation and hygiene into implementation needs complementary research to understand key hydrogeological processes as well as barriers and failings of current practice for reducing contamination in water points. A baseline assessment of water quality status and sanitary risks for e.g. wells vs boreholes, improved vs unimproved sources in Sierra Leone is needed. Understanding the role of the tropical soil zone in the rapid migration of pollutants in the shallow subsurface, i.e. tracing rapid pathways, and quantifying residence times of shallow and deep groundwater systems are key knowledge gaps

    Operations research in disaster preparedness and response: The public health perspective

    Get PDF
    Operations research is the scientific study of operations for the purpose of better decision making and management. Disasters are defined as events whose consequences exceed the capability of civil protection and public health systems to provide necessary responses in a timely manner. Public health science is applied to the design of operations of public health services and therefore operations research principles and techniques can be applied in public health. Disaster response quantitative methods such as operations research addressing public health are important tools for planning effective responses to disasters. Models address a variety of decision makers (e.g. first responders, public health officials), geographic settings, strategies modelled (e.g. dispensing, supply chain network design, prevention or mitigation of disaster effects, treatment) and outcomes evaluated (costs, morbidity, mortality, logistical outcomes) and use a range of modelling methodologies. Regarding natural disasters the modelling approaches have been rather limited. Response logistics related to public health impact of disasters have been modelled more intensively since decisions about procurement, transport, stockpiling, and maintenance of needed supplies but also mass vaccination, prophylaxis, and treatment are essential in the emergency management. Major issues at all levels of disaster response decision making, including long-range strategic planning, tactical response planning, and real-time operational support are still unresolved and operations research can provide useful techniques for decision management.-JRC.G.2-Global security and crisis managemen

    The Health Effects of Climate Change: A Survey of Recent Quantitative Research

    Get PDF
    In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases
    corecore