50,792 research outputs found

    Creating sustainable cities one building at a time: towards an integrated urban design framework

    Get PDF
    One of the tenets of urban sustainability is that more compact urban forms that are more densely occupied are more efficient in their overall use of space and of energy. In many designs this has been translates into high-rise buildings with a focus on energy management at their outer envelopes. However, pursuing this building focused approach alone means that buildings are treated as stand-alone entities with minimal consideration to their impact on the surrounding urban landscape and vice versa. Where urban density is high, individual buildings interact with each other, reducing access to sunshine and daylight, obstructing airflow and raising outdoor air temperature. If/when each building pursues its own sustainability agenda without regard to its urban context, the result will diminish the natural energy resources available to nearby buildings and worsen the outdoor environment generally. This paper examines some of these urban impacts using examples from the City of London where rapid transformation is taking place as very tall buildings with exceptional energy credentials are being inserted into a low-rise city without a plan for the overall impact of urban form. The focus of the paper is on access to sunshine and wind and the wider implications of sustainable strategies that that focuses on individual buildings to the exclusion of the surrounding urban landscape. The work highlights the need for a framework that accounts for the synergistic outcomes that result from the mutual interactions of buildings in urban spaces

    Cities and energy:urban morphology and residential heat-energy demand

    Get PDF
    Our aim is better understanding of the theoretical heat-energy demand of different types of urban form at a scale of 500 m × 500 m. The empirical basis of this study includes samples of dominant residential building typologies identified for Paris, London, Berlin, and Istanbul. In addition, archetypal idealised samples were created for each type through an analysis of their built form parameters and the removal of unwanted ‘invasive’ morphologies. The digital elevation models of these real and idealised samples were run through a simulation that modelled solar gains and building surface energy losses to estimate heat-energy demand. In addition to investigating the effect of macroscale morphological parameters, microscale design parameters, such as U-values and glazing ratios, as well as climatic effects were analysed. The theoretical results of this study suggest that urban-morphology-induced heat-energy efficiency is significant and can lead to a difference in heat-energy demand of up to a factor of six. Compact and tall building types were found to have the greatest heat-energy efficiency at the neighbourhood scale while detached housing was found to have the lowest

    Modelling and observing urban climate in the Netherlands

    Get PDF
    Volgens de klimaatscenario’s van het KNMI uit 2006 zal de gemiddelde temperatuur in Nederland in de komende decennia verder stijgen. Hittegolven zullen naar verwachting vaker voorkomen en de intensiteit van met name zomerse buien kan toenemen. In steden zijn de gevolgen van de opwarming extra voelbaar, omdat de temperaturen er door het zogenoemde Urban Heat Island (UHI) effect veel hoger kunnen zijn dan in het omliggende gebied. Zulke periodes met hoge temperaturen gaan veelal gepaard met verslechterde luchtkwaliteit en droogte. Dit alles kan grote gevolgen hebben voor de leefbaarheid en de gezondheid van de bevolking in stedelijke gebieden. Veranderingen in de buienintensiteit beïnvloeden de waterhuishouding van de stad

    Assessment of highly distributed power systems using an integrated simulation approach

    Get PDF
    In a highly distributed power system (HDPS), micro renewable and low carbon technologies would make a significant contribution to the electricity supply. Further, controllable devices such as micro combined heat and power (CHP) could be used to assist in maintaining stability in addition to simply providing heat and power to dwellings. To analyse the behaviour of such a system requires the modelling of both the electrical distribution system and the coupled microgeneration devices in a realistic context. In this paper a pragmatic approach to HDPS modelling is presented: microgeneration devices are simulated using a building simulation tool to generate time-varying power output profiles, which are then replicated and processed statistically so that they can be used as boundary conditions for a load flow simulation; this is used to explore security issues such as under and over voltage, branch thermal overloading, and reverse power flow. Simulations of a section of real network are presented, featuring different penetrations of micro-renewables and micro-CHP within the ranges that are believed to be realistically possible by 2050. This analysis indicates that well-designed suburban networks are likely to be able to accommodate such levels of domestic-scale generation without problems emerging such as overloads or degradation to the quality of supply

    Energy, carbon and cost performance of building stocks : upgrade analysis, energy labelling and national policy development

    Get PDF
    The area of policy formulation for the energy and carbon performance of buildings is coming under increasing focus. A major challenge is to account for the large variation within building stocks relative to factors such as location, climate, age, construction, previous upgrades, appliance usage, and type of heating/cooling/lighting system. Existing policy-related tools that rely on simple calculation methods have limited ability to represent the dynamic interconnectedness of technology options and the impact of possible future changes in climate and occupant behaviour. The use of detailed simulation tools to address these limitations in the context of policy development has hitherto been focussed on the modelling of a number of representative designs rather than dealing with the spread inherent in large building stocks. Further, these tools have been research-oriented and largely unsuitable for direct use by policy-makers, practitioners and, ultimately, building owners/occupiers. This paper summarises recent initiatives that have applied advanced modelling and simulation in the context of policy formulation for large building stocks. To exemplify the stages of the process, aspects of the ESRU Domestic Energy Model (EDEM) are described. EDEM is a policy support tool built on detailed simulation models aligned with the outcomes of national surveys and future projections for the housing stock. On the basis of pragmatic inputs, the tool is able to determine energy use, carbon emissions and upgrade/running cost for any national building stock or sub-set. The tool has been used at the behest of the Scottish Building Standards Agency and South Ayrshire Council to determine the impact of housing upgrades, including the deployment of new and renewable energy systems, and to rate the energy/carbon performance of individual dwellings as required by the European Commission's Directive on the Energy Performance of Buildings (EC 2002)

    The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0) : an efficient and user-friendly model of city cooling

    Get PDF
    The adverse impacts of urban heat and global climate change are leading policymakers to consider green and blue infrastructure (GBI) for heat mitigation benefits. Though many models exist to evaluate the cooling impacts of GBI, their complexity and computational demand leaves most of them largely inaccessible to those without specialist expertise and computing facilities. Here a new model called The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET) is presented. TARGET is designed to be efficient and easy to use, with fewer user-defined parameters and less model input data required than other urban climate models. TARGET can be used to model average street-level air temperature at canyon-to-block scales (e.g. 100 m resolution), meaning it can be used to assess temperature impacts of suburb-to-city-scale GBI proposals. The model aims to balance realistic representation of physical processes and computation efficiency. An evaluation against two different datasets shows that TARGET can reproduce the magnitude and patterns of both air temperature and surface temperature within suburban environments. To demonstrate the utility of the model for planners and policymakers, the results from two precinct-scale heat mitigation scenarios are presented. TARGET is available to the public, and ongoing development, including a graphical user interface, is planned for future work

    Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship

    Get PDF
    The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively

    The EnTrak system : supporting energy action planning via the Internet

    Get PDF
    Recent energy policy is designed to foster better energy efficiency and assist with the deployment of clean energy systems, especially those derived from renewable energy sources. To attain the envisaged targets will require action at all levels and effective collaboration between disparate groups (e.g. policy makers, developers, local authorities, energy managers, building designers, consumers etc) impacting on energy and environment. To support such actions and collaborations, an Internet-enabled energy information system called 'EnTrak' was developed. The aim was to provide decision-makers with information on energy demands, supplies and impacts by sector, time, fuel type and so on, in support of energy action plan formulation and enactment. This paper describes the system structure and capabilities of the EnTrak system

    Project report. A subtropical urban community, investigating medium to high density residential typologies by Design Charrette

    Get PDF
    The Centre for Subtropical Design at QUT, in partnership with the Queensland Government and Brisbane City Council, conducts research focused on 'best practice' outcomes for higher density urban living environments in the subtropics through the study of typical urban residential typologies, and urban design. The aim of the research is to inform and illustrate best practice subtropical design principles to policy makers and development industry professionals to stimulate climate-responsive outcomes. The Centre for Subtropical Design recently sought project-specific funding from the Queensland Department of Infrastructure and Planning (DIP) to investigate residential typologies for sustainable subtropical urban communities, based on transit orientated development principles and outcomes for areas around public transport nodes. A development site within the Fitzgibbon Urban Development Area, and close to a rail and bsu transport corridor, provided a case study location for this project. Four design-led multi-disciplinary creative teams participated in a Design Charrette and have produced concept drawings and propositions on a range of options, or prototypes. Analysis of selected prototypes has been undertaken to determine their environmental, economic and social performance. This Project Report discusses the scope of the project funded by DIP in terms of activities undertaken to date, and deliverables achieved. A subsequent Research Report will discuss the detailed findings of the analysis
    corecore