227,715 research outputs found

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Analysing Regional Sustainability Through a Systemic Approach: The Lombardy Case Study

    Get PDF
    The intrinsic complexity of the sustainability concept challenges research towards more sophisticated ways to model and assess the dimensions underlying it. However, currently adopted modelling techniques and indicators frameworks are not able to give an integrated assessment through the different components of sustainability, providing incomplete visuals of the reality that they aim to catch. This paper tries to assess how the INSURE methodology can provide a contribution in the analysis of sustainability through indicator frameworks, describing its application to the Lombardy region (Italy). Developed on the course of a 6th European Framework Program – financed project to measure sustainability in the European regions, the methodology provides two distinct sustainability representations, based on a quantitative “top-down” System Dynamics model and on a qualitative “bottom-up” System Thinking approach. The models are then linked to a hierarchical indicator framework setting policy priorities. The overall objective is thus to create a set of regional indicators, adapting the models of regional sustainability to different policy agendas. The purpose of the paper is twofold: defining a new approach to sustainability appraisal, and assessing how the Region is holistically behaving towards sustainable development. Starting from a basis analysis of the main shortcomings highlighted by the use of most adopted methodologies, the paper will verify the contribution given by the INSURE methodology to research in the fields of modelling and indicators approaches, providing insights over methodological adjustments and the results obtained from the application to Lombardy. The conclusions will show how the methodology has tried to overcome identified constraints in current models, like the strong dependence on existing datasets of the obtained representations, the under-coverage of “immaterial factors” role and the scarce integration between sustainability dimensions.ustainable Development, Regional Economics, Econometric and Input Output Models, Development Planning and Policy, Regional Analyses

    The integrated use of enterprise and system dynamics modelling techniques in support of business decisions

    Get PDF
    Enterprise modelling techniques support business process re-engineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulationmodelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink

    HOW CAN PD PROCESS MODELLING BE MADE MORE USEFUL? AN EXPLORATION OF FACTORS WHICH INFLUENCE MODELLING UTILITY

    Get PDF
    In what sense is PD process modelling useful? and how can the utility of modelling be improved? In this paper, we approach these questions through an analysis of PD process modelling ‘utility’ – which in broad terms we consider to be the degree to which a model-based approach or modelling intervention benefits practice. We view the utility of modelling as a composite characteristic which depends both on the properties of models and on the way they are applied. The paper draws upon established principles of cybernetic systems in an attempt to explain the role played by process modelling in operating and improving PD processes. We use this framework to identify eight key factors which influence the utility of modelling in the context of use. Further, we indicate how these factors can be interpreted to identify opportunities to improve modelling utility.International Design Conference - DESIGN 201

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press
    corecore