486 research outputs found

    Symbolic Modelling of Remote Attestation Protocols for Device and App Integrity on Android

    Get PDF

    myTrustedCloud: Trusted cloud infrastructure for security-critical computation and data managment

    Get PDF
    Copyright @ 2012 IEEECloud Computing provides an optimal infrastructure to utilise and share both computational and data resources whilst allowing a pay-per-use model, useful to cost-effectively manage hardware investment or to maximise its utilisation. Cloud Computing also offers transitory access to scalable amounts of computational resources, something that is particularly important due to the time and financial constraints of many user communities. The growing number of communities that are adopting large public cloud resources such as Amazon Web Services [1] or Microsoft Azure [2] proves the success and hence usefulness of the Cloud Computing paradigm. Nonetheless, the typical use cases for public clouds involve non-business critical applications, particularly where issues around security of utilization of applications or deposited data within shared public services are binding requisites. In this paper, a use case is presented illustrating how the integration of Trusted Computing technologies into an available cloud infrastructure - Eucalyptus - allows the security-critical energy industry to exploit the flexibility and potential economical benefits of the Cloud Computing paradigm for their business-critical applications

    Trusted execution: applications and verification

    Get PDF
    Useful security properties arise from sealing data to specific units of code. Modern processors featuring Intel’s TXT and AMD’s SVM achieve this by a process of measured and trusted execution. Only code which has the correct measurement can access the data, and this code runs in an environment trusted from observation and interference. We discuss the history of attempts to provide security for hardware platforms, and review the literature in the field. We propose some applications which would benefit from use of trusted execution, and discuss functionality enabled by trusted execution. We present in more detail a novel variation on Diffie-Hellman key exchange which removes some reliance on random number generation. We present a modelling language with primitives for trusted execution, along with its semantics. We characterise an attacker who has access to all the capabilities of the hardware. In order to achieve automatic analysis of systems using trusted execution without attempting to search a potentially infinite state space, we define transformations that reduce the number of times the attacker needs to use trusted execution to a pre-determined bound. Given reasonable assumptions we prove the soundness of the transformation: no secrecy attacks are lost by applying it. We then describe using the StatVerif extensions to ProVerif to model the bounded invocations of trusted execution. We show the analysis of realistic systems, for which we provide case studies

    Trust and integrity in distributed systems

    Get PDF
    In the last decades, we have witnessed an exploding growth of the Internet. The massive adoption of distributed systems on the Internet allows users to offload their computing intensive work to remote servers, e.g. cloud. In this context, distributed systems are pervasively used in a number of difference scenarios, such as web-based services that receive and process data, cloud nodes where company data and processes are executed, and softwarised networks that process packets. In these systems, all the computing entities need to trust each other and co-operate in order to work properly. While the communication channels can be well protected by protocols like TLS or IPsec, the problem lies in the expected behaviour of the remote computing platforms, because they are not under the direct control of end users and do not offer any guarantee that they will behave as agreed. For example, the remote party may use non-legitimate services for its own convenience (e.g. illegally storing received data and routed packets), or the remote system may misbehave due to an attack (e.g. changing deployed services). This is especially important because most of these computing entities need to expose interfaces towards the Internet, which makes them easier to be attacked. Hence, software-based security solutions alone are insufficient to deal with the current scenario of distributed systems. They must be coupled with stronger means such as hardware-assisted protection. In order to allow the nodes in distributed system to trust each other, their integrity must be presented and assessed to predict their behaviour. The remote attestation technique of trusted computing was proposed to specifically deal with the integrity issue of remote entities, e.g. whether the platform is compromised with bootkit attacks or cracked kernel and services. This technique relies on a hardware chip called Trusted Platform Module (TPM), which is available in most business class laptops, desktops and servers. The TPM plays as the hardware root of trust, which provides a special set of capabilities that allows a physical platform to present its integrity state. With a TPM equipped in the motherboard, the remote attestation is the procedure that a physical node provides hardware-based proof of the software components loaded in this platform, which can be evaluated by other entities to conclude its integrity state. Thanks to the hardware TPM, the remote attestation procedure is resistant to software attacks. However, even though the availability of this chip is high, its actual usage is low. The major reason is that trusted computing has very little flexibility, since its goal is to provide strong integrity guarantees. For instance, remote attestation result is positive if and only if the software components loaded in the platform are expected and loaded in a specific order, which limits its applicability in real-world scenarios. For such reasons, this technique is especially hard to be applied on software services running in application layer, that are loaded in random order and constantly updated. Because of this, current remote attestation techniques provide incomplete solution. They only focus on the boot phase of physical platforms but not on the services, not to mention the services running in virtual instances. This work first proposes a new remote attestation framework with the capability of presenting and evaluating the integrity state not only of the boot phase of physical platforms but also of software services at load time, e.g. whether the software is legitimate or not. The framework allows users to know and understand the integrity state of the whole life cycle of the services they are interacting with, thus the users can make informed decision whether to send their data or trust the received results. Second, based on the remote attestation framework this thesis proposes a method to bind the identity of secure channel endpoint to a specific physical platform and its integrity state. Secure channels are extensively adopted in distributed systems to protect data transmitted from one platform to another. However, they do not convey any information about the integrity state of the platform or the service that generates and receives this data, which leaves ample space for various attacks. With the binding of the secure channel endpoint and the hardware TPM, users are protected from relay attacks (with hardware-based identity) and malicious or cracked platform and software (with remote attestation). Third, with the help of the remote attestation framework, this thesis introduces a new method to include the integrity state of software services running in virtual containers in the evidence generated by the hardware TPM. This solution is especially important for softwarised network environments. Softwarised network was proposed to provide dynamic and flexible network deployment which is an ever complex task nowadays. Its main idea is to switch hardware appliances to softwarised network functions running inside virtual instances, that are full-fledged computational systems and accessible from the Internet, thus their integrity is at stake. Unfortunately, currently remote attestation work is not able to provide hardware-based integrity evidence for software services running inside virtual instances, because the direct link between the internal of virtual instances and hardware root of trust is missing. With the solution proposed in this thesis, the integrity state of the softwarised network functions running in virtual containers can be presented and evaluated with hardware-based evidence, implying the integrity of the whole softwarised network. The proposed remote attestation framework, trusted channel and trusted softwarised network are implemented in separate working prototypes. Their performance was evaluated and proved to be excellent, allowing them to be applied in real-world scenarios. Moreover, the implementation also exposes various APIs to simplify future integration with different management platforms, such as OpenStack and OpenMANO

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Security, Trust and Privacy (STP) Model for Federated Identity and Access Management (FIAM) Systems

    Get PDF
    The federated identity and access management systems facilitate the home domain organization users to access multiple resources (services) in the foreign domain organization by web single sign-on facility. In federated environment the user’s authentication is performed in the beginning of an authentication session and allowed to access multiple resources (services) until the current session is active. In current federated identity and access management systems the main security concerns are: (1) In home domain organization machine platforms bidirectional integrity measurement is not exist, (2) Integrated authentication (i.e., username/password and home domain machine platforms mutual attestation) is not present and (3) The resource (service) authorization in the foreign domain organization is not via the home domain machine platforms bidirectional attestation

    Chapter Securing the Home Energy Management Platform

    Get PDF
    Recently, many efforts have been done to chemically functionalize sensors surface to achieve selectivity towards diagnostics targets, such as DNA, RNA fragments and protein tumoural biomarkers, through the surface immobilization of the related specific receptor. Especially, some kind of sensors such as microcantilevers (gravimetric sensors) and one-dimensional photonics crystals (optical sensors) able to couple Bloch surface waves are very sensitive. Thus, any kind of surface modifications devoted to functionalize them has to be finely controlled in terms of mass and optical characteristics, such as refractive index, to minimize the perturbation, on the transduced signal, that can affect the response sensitivity towards the detected target species

    Practical assessment of Biba integrity for TCG-enabled platforms

    Get PDF
    Checking the integrity of an application is necessary to determine if the latter will behave as expected. The method defined by the Trusted Computing Group consists in evaluating the fingerprints of the platform hardware and software components required for the proper functioning of the application to be assessed. However, this only ensures that a process was working correctly at load-time but not for its whole life-cycle. Policy-Reduced Integrity Measurement Architecture (PRIMA) addresses this problem by enforcing a security policy that denies information flows from potentially malicious processes to an application target of the evaluation and its dependencies (requirement introduced by CW-Lite, an evolution of the Biba integrity model). Given the difficulty of deploying PRIMA (as platform administrators have to tune their security policies to satisfy the CW-Lite requirements) we propose in this paper Enhanced IMA, an extended version of the Integrity Measurement Architecture (IMA) that, unlike PRIMA, works almost out of the box and just reports information flows instead of enforcing them. In addition, we introduce a model to evaluate the information reported by Enhanced IMA with existing technique
    • …
    corecore