24,615 research outputs found

    OperA/ALIVE/OperettA

    Get PDF
    Comprehensive models for organizations must, on the one hand, be able to specify global goals and requirements but, on the other hand, cannot assume that particular actors will always act according to the needs and expectations of the system design. Concepts as organizational rules (Zambonelli 2002), norms and institutions (Dignum and Dignum 2001; Esteva et al. 2002), and social structures (Parunak and Odell 2002) arise from the idea that the effective engineering of organizations needs high-level, actor-independent concepts and abstractions that explicitly define the organization in which agents live (Zambonelli 2002).Peer ReviewedPostprint (author's final draft

    Homo Socionicus: a Case Study of Simulation Models of Norms

    Get PDF
    This paper describes a survey of normative agent-based social simulation models. These models are examined from the perspective of the foundations of social theory. Agent-based modelling contributes to the research program of methodological individualism. Norms are a central concept in the role theoretic concept of action in the tradition of Durkheim and Parsons. This paper investigates to what extend normative agent-based models are able to capture the role theoretic concept of norms. Three methodological core problems are identified: the question of norm transmission, normative transformation of agents and what kind of analysis the models contribute. It can be shown that initially the models appeared only to address some of these problems rather than all of them simultaneously. More recent developments, however, show progress in that direction. However, the degree of resolution of intra agent processes remains too low for a comprehensive understanding of normative behaviour regulation.Norms, Normative Agent-Based Social Simulation, Role Theory, Methodological Individualism

    Trust and corruption: escalating social practices?

    Get PDF
    Escalating social practices spread dynamically, as they take hold. They are selffulfilling and contagious. This article examines two central social practices, trust and corruption, which may be characterized as alternative economic lubricants. Corruption can be a considerable instrument of flexibility while trust may be an alternative to vigilance (or a collective regime of sanctions). Rational equilibrium explanations and psychological accounts of trust and corruption are rejected in favour of a model open to multiple feed-backs. Although there can be too much trust and too little corruption, and (unsurprisingly) too little trust and too much corruption, a state is unattainable in which these forces are in balance. Practices of trust alone can form stable equilibria, but it is claimed that such states are undesirable for economic and moral reasons. By contrast, practices of corruption are inherently unstable. Implications for strategies of control in organizational relations are drawn

    The Development of Social Simulation as Reflected in the First Ten Years of JASSS: a Citation and Co-Citation Analysis

    Get PDF
    Social simulation is often described as a multidisciplinary and fast-moving field. This can make it difficult to obtain an overview of the field both for contributing researchers and for outsiders who are interested in social simulation. The Journal for Artificial Societies and Social Simulation (JASSS) completing its tenth year provides a good opportunity to take stock of what happened over this time period. First, we use citation analysis to identify the most influential publications and to verify characteristics of social simulation such as its multidisciplinary nature. Then, we perform a co-citation analysis to visualize the intellectual structure of social simulation and its development. Overall, the analysis shows social simulation both in its early stage and during its first steps towards becoming a more differentiated discipline.Citation Analysis, Co-Citation Analysis, Lines of Research, Multidisciplinary, Science Studies, Social Simulation

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    Quantitative modelling of the human–Earth System a new kind of science?

    No full text
    The five grand challenges set out for Earth System Science by the International Council for Science in 2010 require a true fusion of social science, economics and natural science—a fusion that has not yet been achieved. In this paper we propose that constructing quantitative models of the dynamics of the human–Earth system can serve as a catalyst for this fusion. We confront well-known objections to modelling societal dynamics by drawing lessons from the development of natural science over the last four centuries and applying them to social and economic science. First, we pose three questions that require real integration of the three fields of science. They concern the coupling of physical planetary boundaries via social processes; the extension of the concept of planetary boundaries to the human–Earth System; and the possibly self-defeating nature of the United Nation’s Millennium Development Goals. Second, we ask whether there are regularities or ‘attractors’ in the human–Earth System analogous to those that prompted the search for laws of nature. We nominate some candidates and discuss why we should observe them given that human actors with foresight and intentionality play a fundamental role in the human–Earth System. We conclude that, at sufficiently large time and space scales, social processes are predictable in some sense. Third, we canvass some essential mathematical techniques that this research fusion must incorporate, and we ask what kind of data would be needed to validate or falsify our models. Finally, we briefly review the state of the art in quantitative modelling of the human–Earth System today and highlight a gap between so-called integrated assessment models applied at regional and global scale, which could be filled by a new scale of model

    Artificiality in Social Sciences

    Get PDF
    This text provides with an introduction to the modern approach of artificiality and simulation in social sciences. It presents the relationship between complexity and artificiality, before introducing the field of artificial societies which greatly benefited from the computer power fast increase, gifting social sciences with formalization and experimentation tools previously owned by "hard" sciences alone. It shows that as "a new way of doing social sciences", artificial societies should undoubtedly contribute to a renewed approach in the study of sociality and should play a significant part in the elaboration of original theories of social phenomena.artificial societies; multi-agent systems; distributed artificial intelligence; complexity

    Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    Get PDF
    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalised clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.Comment: 16 pages, 5 figure
    • …
    corecore