6,963 research outputs found

    Repetition suppression and its contextual determinants in predictive coding

    Get PDF
    This paper presents a review of theoretical and empirical work on repetition suppression in the context of predictive coding. Predictive coding is a neurobiologically plausible scheme explaining how biological systems might perform perceptual inference and learning. From this perspective, repetition suppression is a manifestation of minimising prediction error through adaptive changes in predictions about the content and precision of sensory inputs. Simulations of artificial neural hierarchies provide a principled way of understanding how repetition suppression - at different time scales - can be explained in terms of inference and learning implemented under predictive coding. This formulation of repetition suppression is supported by results of numerous empirical studies of repetition suppression and its contextual determinants

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Neural field model of binocular rivalry waves

    Get PDF
    We present a neural field model of binocular rivalry waves in visual cortex. For each eye we consider a one–dimensional network of neurons that respond maximally to a particular feature of the corresponding image such as the orientation of a grating stimulus. Recurrent connections within each one-dimensional network are assumed to be excitatory, whereas connections between the two networks are inhibitory (cross-inhibition). Slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We derive an analytical expression for the speed of a binocular rivalry wave as a function of various neurophysiological parameters, and show how properties of the wave are consistent with the wave–like propagation of perceptual dominance observed in recent psychophysical experiments. In addition to providing an analytical framework for studying binocular rivalry waves, we show how neural field methods provide insights into the mechanisms underlying the generation of the waves. In particular, we highlight the important role of slow adaptation in providing a “symmetry breaking mechanism” that allows waves to propagate

    The Embedded Neuron, the Enactive Field?

    Get PDF
    The concept of the receptive field, first articulated by Hartline, is central to visual neuroscience. The receptive field of a neuron encompasses the spatial and temporal properties of stimuli that activate the neuron, and, as Hubel and Wiesel conceived of it, a neuron’s receptive field is static. This makes it possible to build models of neural circuits and to build up more complex receptive fields out of simpler ones. Recent work in visual neurophysiology is providing evidence that the classical receptive field is an inaccurate picture. The receptive field seems to be a dynamic feature of the neuron. In particular, the receptive field of neurons in V1 seems to be dependent on the properties of the stimulus. In this paper, we review the history of the concept of the receptive field and the problematic data. We then consider a number of possible theoretical responses to these data

    The Brightness of Colour

    Get PDF
    Background: The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Results: Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI.Conclusions: The data suggest that perceptions of brightness represent a robust visual response to the likely sources of stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses. While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not directly to the world beyond

    Dopaminergic Regulation of Neuronal Circuits in Prefrontal Cortex

    Get PDF
    Neuromodulators, like dopamine, have considerable influence on the\ud processing capabilities of neural networks. \ud This has for instance been shown in the working memory functions\ud of prefrontal cortex, which may be regulated by altering the\ud dopamine level. Experimental work provides evidence on the biochemical\ud and electrophysiological actions of dopamine receptors, but there are few \ud theories concerning their significance for computational properties \ud (ServanPrintzCohen90,Hasselmo94).\ud We point to experimental data on neuromodulatory regulation of \ud temporal properties of excitatory neurons and depolarization of inhibitory \ud neurons, and suggest computational models employing these effects.\ud Changes in membrane potential may be modelled by the firing threshold,\ud and temporal properties by a parameterization of neuronal responsiveness \ud according to the preceding spike interval.\ud We apply these concepts to two examples using spiking neural networks.\ud In the first case, there is a change in the input synchronization of\ud neuronal groups, which leads to\ud changes in the formation of synchronized neuronal ensembles.\ud In the second case, the threshold\ud of interneurons influences lateral inhibition, and the switch from a \ud winner-take-all network to a parallel feedforward mode of processing.\ud Both concepts are interesting for the modeling of cognitive functions and may\ud have explanatory power for behavioral changes associated with dopamine \ud regulation

    Word contexts enhance the neural representation of individual letters in early visual cortex

    No full text
    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions

    Attention – oscillations and neuropharmacology

    Get PDF
    Attention is a rich psychological and neurobiological construct that influences almost all aspects of cognitive behaviour. It enables enhanced processing of behaviourally relevant stimuli at the expense of irrelevant stimuli. At the cellular level, rhythmic synchronization at local and long-range spatial scales complements the attention-induced firing rate changes of neurons. The former is hypothesized to enable efficient communication between neuronal ensembles tuned to spatial and featural aspects of the attended stimulus. Recent modelling studies suggest that the rhythmic synchronization in the gamma range may be mediated by a fine balance between N-methyl-d-aspartate and α-amino-3-hydroxy-5-methylisoxazole-4-propionate postsynaptic currents, whereas other studies have highlighted the possible contribution of the neuromodulator acetylcholine. This review summarizes some recent modelling and experimental studies investigating mechanisms of attention in sensory areas and discusses possibilities of how glutamatergic and cholinergic systems could contribute to increased processing abilities at the cellular and network level during states of top-down attention
    corecore