4,546 research outputs found

    Oil Spill Detection Analyzing “Sentinel 2“ Satellite Images: A Persian Gulf Case Study

    Get PDF
    Oil spills near exploitation areas and oil loading ports are often related to the ambitions of governments to get more oil market share and the negligence at the time of the loading in large tankers or ships. The present study investigates one oil spill event using multi sensor satellite images in the Al Khafji (between Kuwait and Saudi Arabia) zone. Oil slicks have been characterized with multi sensor satellite images over the Persian Gulf and then analyzed in order to detect and classify oil spills in this zone. In particular this paper discusses oil pollution detection in the Persian Gulf by using multi sensor satellite images data. Oil spill images have been selected by using Sentinel 2 images pinpointing oil spill zones. ENVI software for analysing satellite images and ADIOS (Automated Data Inquiry for Oil Spills) for oil weathering modelling have been used. The obtained results in Al Khafji zone show that the oil spill moves towards the coastline firstly increasing its surface and then decreasing it until reaching the coastline

    Marine crude-oil biodegradation: a central role for interspecies interactions

    Get PDF
    The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such " microbial modules" interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons. © 2012 McGenity et al.; licensee BioMed Central Ltd

    Fractional norms and quasinorms do not help to overcome the curse of dimensionality

    Full text link
    The curse of dimensionality causes the well-known and widely discussed problems for machine learning methods. There is a hypothesis that using of the Manhattan distance and even fractional quasinorms lp (for p less than 1) can help to overcome the curse of dimensionality in classification problems. In this study, we systematically test this hypothesis. We confirm that fractional quasinorms have a greater relative contrast or coefficient of variation than the Euclidean norm l2, but we also demonstrate that the distance concentration shows qualitatively the same behaviour for all tested norms and quasinorms and the difference between them decays as dimension tends to infinity. Estimation of classification quality for kNN based on different norms and quasinorms shows that a greater relative contrast does not mean better classifier performance and the worst performance for different databases was shown by different norms (quasinorms). A systematic comparison shows that the difference of the performance of kNN based on lp for p=2, 1, and 0.5 is statistically insignificant

    Developing a smart and clean technology for bioremediation of antibiotic contamination in arable lands

    Get PDF
    This study presents a smart technological framework to efficiently remove azithromycin from natural soil resources using bioremediation techniques. The framework consists of several modules, each with different models such as Penicillium Simplicissimum (PS) bioactivity, soft computing models, statistical optimisation, Machine Learning (ML) algorithms, and Decision Tree (DT) control system based on Removal Percentage (RP). The first module involves designing experiments using a literature review and the Taguchi Orthogonal design method for cultural conditions. The RP is predicted as a function of cultural parameters using Response Surface Methodology (RSM) and three ML algorithms: Instance-Based K (IBK), KStar, and Locally Weighted Learning (LWL). The sensitivity analysis shows that pH is the most important factor among all parameters, including pH, Aeration Intensity (AI), Temperature, Microbial/Food (M/F) ratio, and Retention Time (RT), with a p-value of <0.0001. AI is the next most significant parameter, also with a p-value of <0.0001. The optimal biological conditions for removing azithromycin from soil resources are a temperature of 32 °C, pH of 5.5, M/F ratio of 1.59 mg/g, and AI of 8.59 m3/h. During the 100-day bioremediation process, RP was found to be an insignificant factor for more than 25 days, which simplifies the conditions. Among the ML algorithms, the IBK model provided the most accurate prediction of RT, with a correlation coefficient of over 95%

    Evolutionary polymorphic neural networks in chemical engineering modeling

    Get PDF
    Evolutionary Polymorphic Neural Network (EPNN) is a novel approach to modeling chemical, biochemical and physical processes. This approach has its basis in modern artificial intelligence, especially neural networks and evolutionary computing. EPNN can perform networked symbolic regressions for input-output data, while providing information about both the structure and complexity of a process during its own evolution. In this work three different processes are modeled: 1. A dynamic neutralization process. 2. An aqueous two-phase system. 3. Reduction of a biodegradation model. In all three cases, EPNN shows better or at least equal performances over published data than traditional thermodynamics /transport or neural network models. Furthermore, in those cases where traditional modeling parameters are difficult to determine, EPNN can be used as an auxiliary tool to produce equivalent empirical formulae for the target process. Feedback links in EPNN network can be formed through training (evolution) to perform multiple steps ahead predictions for dynamic nonlinear systems. Unlike existing applications combining neural networks and genetic algorithms, symbolic formulae can be extracted from EPNN modeling results for further theoretical analysis and process optimization. EPNN system can also be used for data prediction tuning. In which case, only a minimum number of initial system conditions need to be adjusted. Therefore, the network structure of EPNN is more flexible and adaptable than traditional neural networks. Due to the polymorphic and evolutionary nature of the EPNN system, the initially randomized values of constants in EPNN networks will converge to the same or similar forms of functions in separate runs until the training process ends. The EPNN system is not sensitive to differences in initial values of the EPNN population. However, if there exists significant larger noise in one or more data sets in the whole data composition, the EPNN system will probably fail to converge to a satisfactory level of prediction on these data sets. EPNN networks with a relatively small number of neurons can achieve similar or better performance than both traditional thermodynamic and neural network models. The developed EPNN approach provides alternative methods for efficiently modeling complex, dynamic or steady-state chemical processes. EPNN is capable of producing symbolic empirical formulae for chemical processes, regardless of whether or not traditional thermodynamic models are available or can be applied. The EPNN approach does overcome some of the limitations of traditional thermodynamic /transport models and traditional neural network models

    Prediction of Metabolic Pathways Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    Full text link
    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations

    Natural source zone depletion of LNAPL: A critical review supporting modelling approaches

    Get PDF
    Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation. Prediction of long-term NSZD trends requires linking physicochemical partitioning and transport processes with bioprocesses at multiple scales within a modelling framework. Here we expand and build on the knowledge base of a recent review of NSZD, to establish the key processes and understanding required to model NSZD long term. We describe key challenges to our understanding, inclusive of the dominance of methanogenic or aerobic biodegradation processes, the potentially changeability of rates due to the weathering profile of LNAPL product types and ages, and linkages to underlying bioprocesses. We critically discuss different scales in subsurface simulation and modelling of NSZD. Focusing on processes at Darcy scale, 36 models addressing processes of importance to NSZD are investigated. We investigate the capabilities of models to accommodate more than 20 subsurface transport and transformation phenomena and present comparisons in several tables. We discuss the applicability of each group of models for specific site conditions

    The environmental fate of organic pollutants through the global microbial metabolism

    Get PDF
    The production of new chemicals for industrial or therapeutic applications exceeds our ability to generate experimental data on their biological fate once they are released into the environment. Typically, mixtures of organic pollutants are freed into a variety of sites inhabited by diverse microorganisms, which structure complex multispecies metabolic networks. A machine learning approach has been instrumental to expose a correlation between the frequency of 149 atomic triads (chemotopes) common in organo-chemical compounds and the global capacity of microorganisms to metabolise them. Depending on the type of environmental fate defined, the system can correctly predict the biodegradative outcome for 73–87% of compounds. This system is available to the community as a web server (http://www.pdg.cnb.uam.es/BDPSERVER). The application of this predictive tool to chemical species released into the environment provides an early instrument for tentatively classifying the compounds as biodegradable or recalcitrant. Automated surveys of lists of industrial chemicals currently employed in large quantities revealed that herbicides are the group of functional molecules more difficult to recycle into the biosphere through the inclusive microbial metabolism

    Experimental and neural model analysis of styrene removal from polluted air in a biofilter

    Get PDF
    BACKGROUND: Biofilters are efficient systems for treating malodorous emissions. The mechanism involved during pollutant transfer and subsequent biotransformation within a biofilm is a complex process. The use of artificial neural networks to model the performance of biofilters using easily measurable state variables appears to be an effective alternative to conventional phenomenological modelling. RESULTS: An artificial neural network model was used to predict the extent of styrene removal in a perlite-biofilter inoculated with a mixed microbial culture. After a 43 day biofilter acclimation period, styrene removal experiments were carried out by subjecting the bioreactor to different flow rates (0.15–0.9 m3 h−1) and concentrations (0.5–17.2 g m−3), that correspond to inlet loading rates up to 1390 g m−3 h−1. During the different phases of continuous biofilter operation, greater than 92% styrene removal was achievable for loading rates up to 250 g m−3 h−1. A back propagation neural network algorithm was applied to model and predict the removal efficiency (%) of this process using inlet concentration (g m−3) and unit flow (h−1) as input variables. The data points were divided into training (115 × 3) and testing set (42 × 3). The most reliable condition for the network was selected by a trial and error approach and by estimating the determination coefficient (R2) value (0.98) achieved during prediction of the testing set. CONCLUSION: The results showed that a simple neural network based model with a topology of 2–4–1 was able to efficiently predict the styrene removal performance in the biofilter. Through sensitivity analysis, the most influential input parameter affecting styrene removal was ascertained to be the flow rate
    corecore