106 research outputs found

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    A methodology for automated service level agreement compliance prediction

    Get PDF
    PhD ThesisService Level Agreement (SLA) specification languages express monitorable contracts between service providers and consumers. It is of interest to determine if predictive models can be derived for SLAs expressed in such languages, if possible in a fashion that is as automated as possible. Assuming that the service developer or user uses some SLA specification languages during the service development or deployment process,the Service level agreement Compliance Prediction(SlaCP) methodology is proposed as a general engineering methodology for predicting SLA compliance.This methodology helps contractual parties to assess the probability of SLA compliance,as automatically as is feasible,by mapping an existing SLA on a stochastic model of the service and using existing numerical solution algorithms or discrete event simulation to solve the model.The SlaCP methodology is generic, but the methodology is mostly described,in this thesis,assuming the use of the Web Service Level Agreement(WSLA)and the Stochastic Discrete Event Systems (SDES)formalism.The approach taken in this methodology is firstly to associate formal semantics with WSLA elements in order to be understood mathematically precise.Then,a five-step mapping process between the source and the target formalisms is conducted.These steps include:mapping into model primitives,reward metrics,expressions for functions of the semetrics,the time at which the prediction occurs,and the ultimate probability of SLA compliance.The proposed methodology is implemented in a software tool that automates most of its steps using Mobius and SPNP.The methodology is evaluated using a case study which shows the methodology’s feasibility and limitations in both theoretical and practical terms.Tishreen University, Ministry of Higher Education in Syri

    Extended Abstracts: PMCCS3: Third International Workshop on Performability Modeling of Computer and Communication Systems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryThe pages of the front matter that are missing from the PDF were blank

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    5G Multi-access Edge Computing: Security, Dependability, and Performance

    Full text link
    The main innovation of the Fifth Generation (5G) of mobile networks is the ability to provide novel services with new and stricter requirements. One of the technologies that enable the new 5G services is the Multi-access Edge Computing (MEC). MEC is a system composed of multiple devices with computing and storage capabilities that are deployed at the edge of the network, i.e., close to the end users. MEC reduces latency and enables contextual information and real-time awareness of the local environment. MEC also allows cloud offloading and the reduction of traffic congestion. Performance is not the only requirement that the new 5G services have. New mission-critical applications also require high security and dependability. These three aspects (security, dependability, and performance) are rarely addressed together. This survey fills this gap and presents 5G MEC by addressing all these three aspects. First, we overview the background knowledge on MEC by referring to the current standardization efforts. Second, we individually present each aspect by introducing the related taxonomy (important for the not expert on the aspect), the state of the art, and the challenges on 5G MEC. Finally, we discuss the challenges of jointly addressing the three aspects.Comment: 33 pages, 11 figures, 15 tables. This paper is under review at IEEE Communications Surveys & Tutorials. Copyright IEEE 202

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed
    corecore