164 research outputs found

    Schedulability Analysis of Distributed Multi-core Avionics Systems with UPPAAL

    Get PDF

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    Performanzanalyse von Multiprozessor-Echtzeitsystemen mit gemeinsamen Ressourcen

    Get PDF

    Performanzanalyse für Multi-Core Multi-Mode Systeme mit gemeinsam genutzten Ressourcen - Verfahren und Anwendung auf AUTOSAR -

    Get PDF
    In order to implement multi-core systems for single-mode and multi-mode real-time applications, as can be found in modern automobiles, their development process requires appropriate methods and tools for timing and performance verification. In this context, this thesis proposes first novel approaches for the analysis of worst-case blocking-times and response-times for single-mode real-time applications that share resources in partitioned multi-core systems. For this purpose a compositional performance analysis methodology is adopted and extended to take into account the contention of tasks on the processor cores and on the shared resources under different combinations of processor scheduling policies and shared resource arbitration strategies. Highly relevant is the compatibility of the proposed analysis methods with the specifications of the automotive AUTOSAR standard, which defines the combination of (1) preemptive, non-preemptive and cooperative core local scheduling with (2) lock-based arbitration of core local shared resources and spinlock-based arbitration of inter-core shared resources. Further, this thesis proposes novel timing analysis solutions for multi-mode distributed real-time systems. For such systems, the settling time of a mode change, called mode change transition latency, is identified as an important system parameter that has been neglected before. This thesis contributes a novel analysis algorithm which gives a maximum bound on each mode change transition latency of multi-mode distributed applications. Knowing the settling time of each mode change, the impact of multiple mode changes and of the possible overload situations can be handled in the early development phases of real-time systems. Finally, an approach for safely handling shared resources across mode changes is presented and a corresponding timing analysis method is contributed. The new analysis solution combines modeling and analysis elements of the multi-core and multi-mode related analysis solutions and focuses on the specification of the AUTOSAR standard. This enables system designers to handle the timing behavior of more complex systems in which the problems of mode management, multi-core scheduling and shared resource arbitration coexist. The applicability and usefulness of the contributed analysis solutions are highlighted by experimental evaluations, which are enabled by the implementation of the proposed analysis methods in a performance analysis tool framework.Um Multicore-Systeme für die Umsetzung zeitkritischer Single- und Multi-Mode Anwendungen in sicherheitskritischen Umgebungen einsetzen zu können, werden in dem Entwicklungsprozess geeignete Analysemethoden und Tools zur Bestimmung des Zeitverhaltens und der Performanz benötigt. Als erster Beitrag dieser Dissertation werden neue Analyseverfahren eingeführt, um die Worst-Case-Antwortzeiten und -Blockierungszeiten für statische Echtzeitanwendungen in Single-Mode eingebetteten Multicore-Systemen mit gemeinsam genutzten Ressourcen zu bestimmen. Die entwickelten Verfahren nutzen einen existierenden kompositionellen Performanzanalyseansatz und erweitern diesen, um verschiedene Kombinationen von partitionierenden Multiprozessor-Schedulingverfahren und –Synchronisationsmechanismen behandeln zu können. Besonders praxisrelevant ist die Möglichkeit, die Kombination von (1) preemptives, nicht-preemptives sowie kooperatives Prozessor-Scheduling und (2) Spinlock-basierten Synchronisationsmechanismen zu analysieren, die heute in AUTOSAR-konformen Automotive-Softwarearchitekturen standardisiert sind. Als zweiter Beitrag wird in dieser Dissertation ein neuer Ansatz für die Analyse der zeitlichen Auswirkungen von mehreren Szenarienübergängen in vernetzten Multi-Mode eingebetteten Systemen eingeführt. Als erste konstruktive Maßnahme ermöglicht das in dieser Arbeit präsentierte Verfahren die Berechnung der Einschwingzeit jedes Szenarioübergangs und leistet dadurch eine wichtige Hilfestellung beim Systementwurf. Auf diese Weise können die Auswirkungen der Szenarienübergänge, einschließlich der zeitlich begrenzten Überlastsituationen, kontrolliert und in den Systementwurf frühzeitig einbezogen werden. Als letzter Beitrag dieser Dissertation wird ein Ansatz für die Handhabung der Zugriffskonflikte auf gemeinsam genutzten Ressourcen in Multi-Mode eingebetteten Multicore-Systemen präsentiert und eine entsprechende Analysemethode eingeführt. Die neue Analyse kombiniert Modellierungs- und Analyse-Elemente der vorher in dieser Arbeit eingeführten Analyseansätze, und ermöglicht die Untersuchung des ungünstigsten Zeitverhaltens viel komplexer eingebetteten Multicore-Systemen. Dabei werden erneut Spezifikationen der AUTOSAR-Standards berücksichtigt. Nicht zuletzt werden alle Analysemethoden in eine Toolumgebung implementiert und für verschiedene Experimente, die deren praktische Anwendbarkeit hervorheben, angewendet

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    A REST Model for High Throughput Scheduling in Computational Grids

    Get PDF
    Current grid computing architectures have been based on cluster management and batch queuing systems, extended to a distributed, federated domain. These have shown shortcomings in terms of scalability, stability, and modularity. To address these problems, this dissertation applies architectural styles from the Internet and Web to the domain of generic computational grids. Using the REST style, a flexible model for grid resource interaction is developed which removes the need for any centralised services or specific protocols, thereby allowing a range of implementations and layering of further functionality. The context for resource interaction is a generalisation and formalisation of the Condor ClassAd match-making mechanism. This set theoretic model is described in depth, including the advantages and features which it realises. This RESTful style is also motivated by operational experience with existing grid infrastructures, and the design, operation, and performance of a proto-RESTful grid middleware package named DIRAC. This package was designed to provide for the LHCb particle physics experiment's âワoff-lineâ computational infrastructure, and was first exercised during a 6 month data challenge which utilised over 670 years of CPU time and produced 98 TB of data through 300,000 tasks executed at computing centres around the world. The design of DIRAC and performance measures from the data challenge are reported. The main contribution of this work is the development of a REST model for grid resource interaction. In particular, it allows resource templating for scheduling queues which provide a novel distributed and scalable approach to resource scheduling on the grid

    Applying the Engineering Statechart Formalism to the evaluation of soft real-time in operating systems : a use case tailored modeling and analysis technique

    Get PDF
    Multimedia applications that have emerged in recent years impose unique requirements on an underlying general purpose operating system (GPOS). The suitability of a GPOS for multimedia processing is judged by its soft real-time capabilities. To date, the question of how these capabilities can be assessed has scarcely been addressed: this is a gap in GPOS research. By answering questions on the impacts of the Interrupt Handling Facility (IHF) on the overall soft real-time capabilities of a GPOS, this thesis contributes to the filling of this blank space. The Engineering Statechart Formalism (ESF), a use case tailored formal method of modeling real-world OS, is syntactically and semantically defined. Models of the IHF of selected real-world operating systems are then created by means of this technique. As no appropriate real-time concept fitting the goals of this thesis as yet exists, a suitable definition is constructed. By projecting this system-wide idea to the interrupt subsystem, specific indicators for this subsystem are erived. These indicators are then evaluated by applying formal techniques such as graph-based analysis and temporal logic model checking to the ESF models. Finally, the assertions derived from this evaluation are interpreted with respect to their impacts on real-time multimedia processing in different general purpose operating systems.Multimedia-Anwendungen haben in den letzten Jahren weite Verbreitung erfahren. Solche Anwendungen stellen besondere Anforderungen an das Betriebssystem (BS), auf dem sie ausgeführt werden. Insbesondere Echtzeitfähigkeiten des Betriebssystems sind von Bedeutung, wenn es um seine Eignung für Multimedia-Verarbeitung geht. Bis heute wurde die Frage, wie sich diese Fähigkeiten konkret innerhalb eines BS manifestieren, nur unzureichend untersucht. Die vorliegende Arbeit leistet einen Beitrag zur Füllung dieser Lücke in der BS-Forschung. Die Effekte des Subsystems zur Unterbrechungsbehandlung in BS auf die Echtzeitfähigkeit des Gesamtsystems werden detailliert auf Basis von Modellen dieses Subsystems in verschiedenen BS analysiert. Um eine formale Auswertung zu erlauben, wird eine auf den Anwendungsfall zugeschnittene formale Methode zur BS-Modellierung verwendet. Die spezifizierte Syntax und Semantik dieses Engineering Statechart Formalism (ESF) basieren auf dem klassischen Statechart-Formalismus. Da bislang kein geeigneter Echtzeit-Begriff existiert, wird eine konsistente Definition hergeleitet. Durch die Abbildung dieser sich auf das Gesamtsystem beziehenden Eigenschaft auf die Unterbrechungsbehandlung werden spezifische Indikatoren für dieses Subsystem hergeleitet. Die Ausprägungen dieser Indikatoren für die verschiedenen untersuchten Betriebssyteme werden anhand formaler Methoden wie graphbasierter Analyse und Temporal Logic Model Checking ausgewertet. Die Interpretation der Untersuchungsergebnisse liefert Aussagen über die Effekte der Implementierung der Unterbrechungsbehandlung auf die Echtzeitfähigkeit der untersuchten Betriebssysteme bei der Verarbeitung von multimedialen Daten
    corecore