20 research outputs found

    Abschlussbericht des Forschungsprojekts "Broker fĂĽr Dynamische Produktionsnetzwerke"

    Get PDF
    Der Broker für dynamische Produktionsnetzwerke (DPNB) ist ein vom Bundesministerium für Bildung und Forschung (BMBF) gefördertes und durch den Projektträger Karlsruhe (PTKA) betreutes Forschungsprojekt zwischen sieben Partnern aus Wissenschaft und Wirtschaft mit einer Laufzeit von Januar 2019 bis einschließlich Dezember 2021. Über den Einsatz von Cloud Manufacturing sowie Hard- und Software-Komponenten bei den teilnehmenden Unternehmen, sollen Kapazitätsanbieter mit Kapazitätsnachfrager verbunden werden. Handelbare Kapazitäten sind in diesem Falle Maschinen-, sowie Transport- und Montagekapazitäten, um Supply Chains anhand des Anwendungsfalls der Blechindustrie möglichst umfassend abzubilden. Der vorliegende Abschlussbericht fasst den Stand der Technik sowie die Erkenntnisse aus dem Projekt zusammen. Außerdem wird ein Überblick über die Projektstruktur sowie die Projektpartner gegeben

    Arbeit in der digitalisierten Welt

    Get PDF
    Das vorliegende Open-Access-Buch umfasst Beiträge aus 29 Verbundvorhaben sowie dem begleitenden Verbundprojekt „TransWork“. Im Rahmen des Förderschwerpunkts „Arbeit in der digitalisierten Welt“ des Bundesministeriums für Bildung und Forschung wurden in den Projekten Entwicklungen im Transformationsprozess der Arbeitswelt analysiert, Lösungsansätze entwickelt und diese wissenschaftlich begleitet. In den Beiträgen werden Einblicke in die erarbeiteten Erkenntnisse und entwickelten Konzepte der Projekte gegeben. Hieraus lassen sich für Akteure aus Politik und Wirtschaft Handlungsempfehlungen ableiten und es ergeben sich neue Forschungsimpulse für die Wissenschaft

    Abteilungsübergreifende Termin- und Reihenfolgeplanung in Krankenhäusern mittels multichromosomaler, künstlicher Evolution

    Get PDF
    Seit der Umstellung des Vergütungssystems auf diagnosebezogene Fallpauschalen sind Krankenhäuser gezwungen, effizient zu arbeiten um kostendeckend zu wirtschaften. Unter diesem Gesichtspunkt steigt die Notwendigkeit zur Planung und Optimierung der Abläufe innerhalb dieser. Gegenstand der vorliegenden Arbeit ist eine abteilungsübergreifende Termin- und Reihenfolgeplanung der Patienten, mit dem Ziel, die Krankenhausressourcen möglichst effizient einzusetzen und die Wartezeiten der Patienten zu minimieren. Bis heute werden Lösungsansätze nach ambulanter Aufnahmeplanung, stationärer Aufnahmeplanung sowie OP-Planung differenziert und überwiegend losgelöst voneinander betrachtet. Die bisherigen Lösungsansätze verkennen weitestgehend, dass die stationär und ambulant aufgenommenen Patienten im weiteren Ablauf teils dieselben Ressourcen beanspruchen. Auch lässt sich eine OP-Planung nicht verlässlich durchführen, ohne die Aufnahmeplanung und ohne die vorhandenen Krankenhausressourcen (z.B. Betten, Personal) mit deren jeweiligen Kapazitäten in der Planung zu berücksichtigen. Daher erfolgt erstmalig in der hier entwickelten Planungsmethode eine gesamtheitliche Betrachtung der Problemfelder der stationären Aufnahmeplanung, der ambulanten Aufnahmeplanung und der OP-Planung, unter Berücksichtigung erforderlicher vor- und nachgelagerter Ressourcen, insbesondere der Notaufnahme. Es wird auf den Untersuchungsgegenstand bezogen aufgezeigt, wie die vorliegenden fachübergreifenden und dynamischen Gegebenheiten (fachübergreifende und dynamische Komplexität) berücksichtigt werden können, ohne im Detaillierungsgrad mit vielen stark vereinfachenden Annahmen zu arbeiten (Detailkomplexität), wie es bisherige Arbeiten tun. Um der dynamischen Eigenschaft der zugrundeliegenden Prozesse zu entsprechen (dynamische Komplexität), wurde ein dynamisches Simulationsmodell (ausführbares Modell) entwickelt, welches unter Einsatz einer hier entwickelten Methode zur automatisierten Transformation aus eEPK Prozessbeschreibungen aufgebaut und an Realdaten validiert wurde. Der Arbeit liegen Prozesse und Daten aus drei Kliniken der Maximalversorgung zugrunde (Referenzklinik). Um der Detailkomplexität gerecht zu werden, sind im Modell auf die Planung einwirkende stochastische Einflüsse berücksichtigt, wie u.a. Notfälle, nicht geplantes Patientenaufkommen (nicht-elektiv, walk-ins), Unpünktlichkeit von Patienten, Ausbleiben von Patienten (no-show), Varianzen im Behandlungsverlauf, Varianzen in den Bearbeitungszeiten oder Störungen resp. Ausfälle technischer Ressourcen. Das entwickelte Planungskonzept wird in einer multichromosomalen Repräsentation kodiert. Die Planung und Optimierung erfolgt mit einem hybriden Genetischen Algorithmus (GA), welcher eine hier entwickelte Methode der selbstadaptiven Mutation einsetzt. Im Weiteren werden die Ergebnisse der optimierten Termin- und Reihenfolgeplanung dargelegt und analysiert. Abschließend wird ein konkreter Vorschlag zur Umsetzung im Krankenhaus unterbreitet.Since the compensation system was switched to diagnosis-related payments, hospitals have been forced to work efficiently in order to economize and cover costs. To achieve these objectives, processes have to be planned and optimized. In this work an inter-departmental plan for appointment and patient sequencing is developed, that focus on using hospital resources efficiently and minimize patients waiting time. Up to now the approach has been to find dedicated and independent solutions for the outpatient admission, inpatient admission and operating room (surgery) planning, even so they are dynamically coupled. The current solutions for the most part do not take into consideration that inpatients and outpatients lay claim to many of the same resources in subsequent procedures. Surgery planning cannot be carried out reliably without planning admission or taking the available resources of the hospital (e.g. beds, staff) and their respective capacities into account. The planning method developed here, hence for the first time combines the problem areas in planning admissions for in- and outpatients, and surgeries, taking into account the required upstream and downstream resources, in particular from the emergency department. It is shown, how the inter-departmental, dynamic conditions (inter-departmental and dynamic complexity) can be taken into account without the need to work at a level of detail with numerous grossly simplifying assumptions (detail complexity) as in previous research. In order to consider the dynamics of the underlying processes (dynamic complexity), a dynamic simulation model (executable model) has been developed. An automated transformation method was developed and used to transform an eEPC description of the underlying processes into an executable model. The model was validated for recorded data from a hospital. The research was based on processes and data from three maximum care clinics (reference clinics). To do justice to the detail complexity, stochastic variations which affect planning have been taken into consideration, such as emergencies, unplanned patient volumes (non-electives, walk-ins), patients' lack of punctuality, patient absence (no-show), variances in the course of treatment, variances in processing time or faults and failures of technical resources. The developed planning concept is coded by a multichromosomal representation. For planning and optimization a hybrid genetic algorithm (GA) is used, that employs a method for self-adapting mutation developed here. GA performance for self-adapting mutation rate and several static mutation rates are compared. The results of the optimization are presented and analyzed. It is shown how the developed planning concept may be integrated into an existing hospital IT-system (SAP IS-H*med)

    Multikonferenz Wirtschaftsinformatik (MKWI) 2016: Technische Universität Ilmenau, 09. - 11. März 2016; Band II

    Get PDF
    Übersicht der Teilkonferenzen Band II • eHealth as a Service – Innovationen für Prävention, Versorgung und Forschung • Einsatz von Unternehmenssoftware in der Lehre • Energieinformatik, Erneuerbare Energien und Neue Mobilität • Hedonische Informationssysteme • IKT-gestütztes betriebliches Umwelt- und Nachhaltigkeitsmanagement • Informationssysteme in der Finanzwirtschaft • IT- und Software-Produktmanagement in Internet-of-Things-basierten Infrastrukturen • IT-Beratung im Kontext digitaler Transformation • IT-Sicherheit für Kritische Infrastrukturen • Modellierung betrieblicher Informationssysteme – Konzeptuelle Modelle im Zeitalter der digitalisierten Wirtschaft (d!conomy) • Prescriptive Analytics in I

    Entwicklung von prozessorientierten Informationssystemen fĂĽr die industrielle Dienstleistungsbeschaffung

    Get PDF
    In der industriellen Dienstleistungsbeschaffung mangelt es an adäquaten domänenspezifischen Lösungsansätzen für die präzise Modellierung, qualitative und quantitative Analyse und Implementierung elektronischer Geschäftsprozesse in prozessorientierte Informationssysteme. In der vorliegenden Arbeit werden neue Lösungsansätze auf Basis von Methoden, Modellen und E-Business-Lösungen erarbeitet, um die Entwicklung und Gestaltung prozessorientierter Informationssysteme zu verbessern

    Modellbasierte UnterstĂĽtzung der Produktentwicklung - Potentiale der Modellierung von Produktentstehungsprozessen am Beispiel des integrierten Produktentstehungsmodells (iPeM) = Model Based Support of Product Development - Potentials of Modelling Product Engineering Processes using the example of the Integrated Product Engineering Model (iPeM)

    Get PDF
    In dieser Arbeit erfolgt eine Spezifizierung des Nutzens und Aufwands der Prozessmodellierung in der Produktentwicklung. Im Rahmen von systematisch aufeinander aufbauenden Studien werden Möglichkeiten und Grenzen erforscht, um einen Modellierungsansatz in der Praxis anwendbar zu machen. Aus der Evaluation verschiedener Werkzeuge und Modellierungstechniken folgt als Kernergebnis der Dissertation eine Erweiterung des zugrunde gelegten Modellverständnisses in Form eines fraktalen Metamodells

    Bericht zum Seminar ĂĽber Elektro-CAD (Sommersemester 2000)

    Get PDF
    Die rechnergestützte Produktentwicklung erfolgt heutzutage in einem interdisziplinären Arbeitsprozeß, innerhalb dessen Experten verschiedener Ingenieurbereiche und Branchen ihr Fachwissen und Können mittels modernster Software-Werkzeuge in sogenannte Produktmodelle einbringen. Derartige Produktmodelle verkörpern die informationstechnische Datenbasis eines zu entwickelnden bzw. zu fertigenden Produktes und sind zur Gestaltung eines effizienten Produktentwicklungsprozesses mittlerweile obligatorisch. Eine der Schlüsseltechnologien der rechnergestützten Produktentwicklung ist der Bereich des Computer Aided Design, kurz CAD, innerhalb dessen die konstruktive Modellierung des Konstruktionsobjektes erfolgt. Während die CAD-Technologie in den Anwendungsbereichen Mechanik bzw. Maschinenbau bereits seit vielen Jahren etabliert ist - und heute einen immens hohen Entwicklungsstand aufweist - befindet sich die Entwicklung von effizienten Werkzeugen zur rechnergestützten Konstruktion elektrotechnischer bzw. elektromechanischer Produkte auf einem weitaus niedrigeren technologischen Niveau. Die Gründe hierfür mögen zum Teil historisch bedingt sein, denn die Entwicklung von Elektro-CAD-Werkzeugen (E-CAD) hat erst rund zwanzig Jahre nach der Entwicklung von Mechanik-CAD-Werkzeugen (M-CAD) eingesetzt, da schlichtweg bis dato kaum Bedarf an solchen Werkzeugen für die Elektrokonstruktion bestand. Ferner unterscheiden sich Maschinenbau und Elektrotechnik in bezug auf Aufbau und Darstellung von CAD-Modellen stark voneinander, so daß die für den M-CAD-Bereich entwickelten Werkzeuge nicht ohne weiteres für die Verwendung im E-CAD-Umfeld angepaßt werden konnten. Seit Mitte der Neunziger Jahre beschäftigen sich zahlreiche Wissenschaftler, E-CAD-Anwender und Systementwickler verstärkt mit der Entwicklung einer neuen (dritten) Elektro-CAD- Systemgeneration, welche den zukünftigen Anforderungen an ein modernes Electrical Engineering gerecht werden soll

    Konzeption eines interorganisationalen Kooperationsprozessmodells und Validierung mittels einer Fallstudie aus der Automobilindustrie

    Get PDF
    Aufgrund des Wandels und der Zunahme von Anforderungen seitens Markt und Kunde, müssen auch Unternehmen immer flexibler und anpassungsfähiger werden. Mit effizient umgesetzten Kooperationen versuchen Unternehmen sich diesen Herausforderungen zu stellen und sich an den teilweise sehr schnell ändernden Bedürfnissen des Marktes auszurichten. Hierbei spielen wirtschaftliche Faktoren eine entscheidende Rolle. Wo früher eine tiefe Fertigungstiefe in den Unternehmen vorgeherrscht hat, werden heute mehr und mehr Aufgaben „outgesourct“. Kernkompetenzen und Stärken von Unternehmen werden mittels Kooperationen zu „best-of-everything“ Organisationen formiert. Diese Arbeit setzt hier auf, indem sie ein detailliertes ganzheitliches Kooperationsprozessmodell für Kooperationen zwischen Unternehmen einführt, das in enger Zusammenarbeit mit der Industrie entwickelt wurde. Ziel der Arbeit ist es dabei, ein Phasenmodell zu entwickeln, welches es erlaubt, die heute noch vorwiegend vorzufindende funktional und hierarchisch ausgerichtete Prozesswelt in eine kooperative, vernetzte, automatisierte und unternehmensübergreifende Welt zu überführen. Ausgangspunkt dieser Arbeit ist dabei die Feststellung des Autors, dass die derzeitigen in der Literatur beschriebenen Unternehmenskooperationsmodelle aus Sicht der Praxis nicht ausreichend genug Unterstützung bieten, um wesentlichen zukünftigen Herausforderungen des Marktes und der Kunden zu entsprechen, sowie vor allem die zunehmenden Technologiepotenziale auszuschöpfen
    corecore