8 research outputs found

    Interaktive Segmentierungsverfahren im Rahmen der adaptiven Strahlentherapieplanung

    Get PDF
    Die Segmentierung der Risikoorgane ist ein zeitraubender Teil der computergestützten Strahlentherapieplanung. Im Rahmen neuer Bestrahlungstechniken der adaptiven Therapie sind schnelle, robuste und genaue Segmentierungsverfahren die Voraussetzung für eine effiziente Neu-Segmentierung von Verfikationsaufnahmen und Planungsdaten verschiedener Modalitäten. Im Rahmen dieser Arbeit wurden daher verschiedene interaktive Segmentierungsverfahren implementiert und evaluiert. Diese umfassen Verfahren aus den Bereichen der aktiven Konturmodelle, der Formmodelle und der graphenbasierten Verfahren. Das verwendete aktive Konturmodell basiert auf einem T-Snakes-Ansatz. Dabei handelt es sich um die Anpassung einer parametrisierten Oberfläche an die Bilddaten unter Einfluss einer Ähnlichkeitskraft, die aus den Bilddaten gewonnen wird, und einer regularisierenden Krümmungskraft, die eine glatte Oberfläche favorisiert. Zusätzlich erlauben T-Snakes topologische Änderungen ihrer Oberfläche während der Segmentierung. Aufbauend auf dem Optimierungsverfahren der T-Snakes wurde ein Formmodell entwickelt. Aus Trainingsdaten wird eine typische Form ermittelt, die bei der Segmentierung berücksichtigt wird. Dies geschieht im verwendeten Verfahren durch Aufteilung der Oberfläche in Bereiche gleicher Krümmung und einer anschließenden Anpassung dieser Bereiche an die Bilddaten. Beim dritten Ansatz, dem graphenbasierten Verfahren, wurde der multi-labelled Random-Walk-Algorithmus umgesetzt. Dieser übersetzt einen Bilddatensatz in einen Graphen und partitioniert diesen dann aufgrund der Erreichungswahrscheinlichkeit eines Random-Walk-Prozesses bzgl. manuell gesetzter Markierungen, sog. Label. Getestet wurden die implementierten Verfahren vor allem auf planungsrelevanten CT-Daten, obwohl sie ohne Einschränkung auch für andere Bildmodalitäten verwendbar sind. Die unterschiedlichen Algorithmen decken ein breites Spektrum an Segmentierungsanforderungen bzgl. Robustheit, Genauigkeit und Effizienz ab. Dadurch reduzieren sie den Zeitbedarf für die Segmentierung von Planungsdaten und erlauben eine weitere Automatisierung der Segmentierung im Rahmen der Strahlentherapieplanung

    Patientenspezifische Planung für die Multi-Port Otobasischirurgie

    Get PDF
    Bisher werden Operationen im Bereich der seitlichen Schädelbasis (Otobasis) stark invasiv durchgeführt. Um die Traumatisierung für den Patienten zu reduzieren, wird seit kurzem ein Multi-Port Ansatz untersucht, bei dem bis zu drei dünne Bohrkanäle von der Schädeloberfläche bis zum Operationsziel angelegt werden. Aufgrund der Minimalinvasivität des neuen Eingriffs ist die visuelle Kontrolle durch den Chirurgen nicht mehr möglich. Somit ist eine präzise patientenspezifische Planung basierend auf Bilddaten zwingend erforderlich. Der Fokus dieser Arbeit liegt daher auf der Planung eines Multi-Port Eingriffs basierend auf patientenspezifischen Modellen. Zur Generierung dieser Modelle habe ich zunächst Methoden für die Segmentierung der Risikostrukturen der Otobasis in Computertomographiedaten entwickelt. Die Herausforderungen dabei sind die geringe Größe der Strukturen, der fehlende Kontrast zum umliegenden Gewebe sowie die zum Teil variierende Form und Bildintensität. Daher schlage ich die Verwendung eines modellbasierten Ansatzes – das Probabilistic Active Shape Model – vor. Dieses habe ich für die Risikostrukturen der Otobasis adaptiert und intensiv evaluiert. Dabei habe ich gezeigt, dass die Segmentierungsgenauigkeit im Bereich der manuellen Segmentierungsgenauigkeit liegt. Ferner habe ich Methoden für die automatische Planung der Bohrkanäle basierend auf den durch die Segmentierung gewonnenen patientenspezifischen Modellen entwickelt. Die Herausforderung hierbei ist, dass der Multi-Port Eingriff noch nicht im klinischen Einsatz ist und somit Erfahrung mit der neuen Strategie fehlt. Daher wurde zunächst ein Planungstool zur Berechnung einer Menge von zulässigen Bohrkanälen entwickelt und die manuelle Auswahl einer Bohrkanalkombination ermöglicht. Damit haben zwei Ärzte eine erste Machbarkeitsanalyse durchgeführt. Die so gewonnene Erfahrung und Datenbasis habe ich formalisiert und ein Modell für die automatische Planung einer Bohrkanalkombination abgeleitet. Die Evaluation zeigt, dass auf diese Weise Bohrkanalkombinationen vergleichbar mit der manuellen Wahl der Ärzte berechnet werden können. Damit ist erstmals die computergestützte Planung eines Multi-Port Eingriffs an der Otobasis möglich

    Zeitabhängige, multimodale Modellierung und Analyse von Herzdaten

    Get PDF
    Kardiovaskuläre Erkrankungen stellen in den westlichen Industrienationen eine der Haupttodesursachen dar. Für die Diagnostik steht inzwischen mit der Computer-Tomographie ein leistungsfähiges bildgebendes Verfahren zur Verfügung. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, um dem Radiologen durch eine weitgehend automatische und umfassende Analyse von 4D-CTA-Daten und der automatischen Berechnung wichtiger diagnostischer Parameter zu unterstützen

    Dreidimensionale Straßenmodelle für Fahrerassistenzsysteme auf Landstraßen

    Get PDF
    Ein dreidimensionales Straßenmodell, basierend auf dem Klothoidenmodell, erweitert durch drei Splinefunktionen, ermöglicht die Modellierung des komplexen Straßenverlaufs von Landstraßen. Im Horizontalen können enge Krümmungswechsel, im Vertikalen der Anstieg und Abfall einer Straße dargestellt werden. Zusätzlich wird die Veränderung der Straßenquerneigung durch eine unabhängige Modellierung des rechten und linken Straßenrandes realisiert. Die Umgebung wird mit einem Stereokamerasystem vermessen

    Dreidimensionale Straßenmodelle für Fahrerassistenzsysteme auf Landstraßen

    Get PDF
    Ein dreidimensionales Straßenmodell, basierend auf dem Klothoidenmodell, erweitert durch drei Splinefunktionen, ermöglicht die Modellierung des komplexen Straßenverlaufs von Landstraßen. Im Horizontalen können enge Krümmungswechsel, im Vertikalen der Anstieg und Abfall einer Straße dargestellt werden. Zusätzlich wird die Veränderung der Straßenquerneigung durch eine unabhängige Modellierung des rechten und linken Straßenrandes realisiert. Die Umgebung wird mit einem Stereokamerasystem vermessen

    Übertragbarkeit der objektbasierten Analyse bei der Gewinnung von GIS-Daten aus Satellitenbildern mittlerer Auflösung

    Get PDF
    Der Bedarf an aktuellen GIS-Daten für großflächige Bereiche, wie z.B. ganze Länder, wächst ständig. Satellitenbilder haben sich als Datenquelle für GIS-Daten etabliert, da sie zeitnah und weltweit verfügbar sind. Im Bereich der Entwicklung von wirtschaftlichen Verfahren zur Datengewinnung aus Satellitenbildern werden objektbasierte Bildanalysemethoden immer wichtiger. Die Ausführungen der vorliegenden Arbeit konzentrieren sich auf die Übertragbarkeit der objektbasierten Analyse von Fernerkundungsdaten. In einem ersten Schritt werden die Modelle für die objektbasierte Analyse aufgestellt. Nachfolgend werden diese Modelle in möglichst allgemein gültige Regelsätze überführt. Die Übertragbarkeit der Regelsätze wird in zahlreichen praktischen Experimenten nachgewiesen. Es werden Satellitenbilddaten mittlerer Auflösung (IRS) verwendet und zwei beispielhafte Regionen in Nordalgerien klassifiziert. Die Ergebnisse zeigen, dass trotz zahlreicher Einflussfaktoren die Übertragbarkeit der Regelsätze gegeben ist und der Prozess der objektbasierten Bildanalyse deutlich verkürzt werden kann

    The Probabilistic Active Shape Model: From Model Construction to Flexible Medical Image Segmentation

    Get PDF
    Automatic processing of three-dimensional image data acquired with computed tomography or magnetic resonance imaging plays an increasingly important role in medicine. For example, the automatic segmentation of anatomical structures in tomographic images allows to generate three-dimensional visualizations of a patient’s anatomy and thereby supports surgeons during planning of various kinds of surgeries. Because organs in medical images often exhibit a low contrast to adjacent structures, and because the image quality may be hampered by noise or other image acquisition artifacts, the development of segmentation algorithms that are both robust and accurate is very challenging. In order to increase the robustness, the use of model-based algorithms is mandatory, as for example algorithms that incorporate prior knowledge about an organ’s shape into the segmentation process. Recent research has proven that Statistical Shape Models are especially appropriate for robust medical image segmentation. In these models, the typical shape of an organ is learned from a set of training examples. However, Statistical Shape Models have two major disadvantages: The construction of the models is relatively difficult, and the models are often used too restrictively, such that the resulting segmentation does not delineate the organ exactly. This thesis addresses both problems: The first part of the thesis introduces new methods for establishing correspondence between training shapes, which is a necessary prerequisite for shape model learning. The developed methods include consistent parameterization algorithms for organs with spherical and genus 1 topology, as well as a nonrigid mesh registration algorithm for shapes with arbitrary topology. The second part of the thesis presents a new shape model-based segmentation algorithm that allows for an accurate delineation of organs. In contrast to existing approaches, it is possible to integrate not only linear shape models into the algorithm, but also nonlinear shape models, which allow for a more specific description of an organ’s shape variation. The proposed segmentation algorithm is evaluated in three applications to medical image data: Liver and vertebra segmentation in contrast-enhanced computed tomography scans, and prostate segmentation in magnetic resonance images
    corecore