896 research outputs found

    Verifying and Monitoring IoTs Network Behavior using MUD Profiles

    Full text link
    IoT devices are increasingly being implicated in cyber-attacks, raising community concern about the risks they pose to critical infrastructure, corporations, and citizens. In order to reduce this risk, the IETF is pushing IoT vendors to develop formal specifications of the intended purpose of their IoT devices, in the form of a Manufacturer Usage Description (MUD), so that their network behavior in any operating environment can be locked down and verified rigorously. This paper aims to assist IoT manufacturers in developing and verifying MUD profiles, while also helping adopters of these devices to ensure they are compatible with their organizational policies and track devices network behavior based on their MUD profile. Our first contribution is to develop a tool that takes the traffic trace of an arbitrary IoT device as input and automatically generates the MUD profile for it. We contribute our tool as open source, apply it to 28 consumer IoT devices, and highlight insights and challenges encountered in the process. Our second contribution is to apply a formal semantic framework that not only validates a given MUD profile for consistency, but also checks its compatibility with a given organizational policy. We apply our framework to representative organizations and selected devices, to demonstrate how MUD can reduce the effort needed for IoT acceptance testing. Finally, we show how operators can dynamically identify IoT devices using known MUD profiles and monitor their behavioral changes on their network.Comment: 17 pages, 17 figures. arXiv admin note: text overlap with arXiv:1804.0435

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    The integrity of digital technologies in the evolving characteristics of real-time enterprise architecture

    Get PDF
    Advancements in interactive and responsive enterprises involve real-time access to the information and capabilities of emerging technologies. Digital technologies (DTs) are emerging technologies that provide end-to-end business processes (BPs), engage a diversified set of real-time enterprise (RTE) participants, and institutes interactive DT services. This thesis offers a selection of the author’s work over the last decade that addresses the real-time access to changing characteristics of information and integration of DTs. They are critical for RTEs to run a competitive business and respond to a dynamic marketplace. The primary contributions of this work are listed below. • Performed an intense investigation to illustrate the challenges of the RTE during the advancement of DTs and corresponding business operations. • Constituted a practical approach to continuously evolve the RTEs and measure the impact of DTs by developing, instrumenting, and inferring the standardized RTE architecture and DTs. • Established the RTE operational governance framework and instituted it to provide structure, oversight responsibilities, features, and interdependencies of business operations. • Formulated the incremental risk (IR) modeling framework to identify and correlate the evolving risks of the RTEs during the deployment of DT services. • DT service classifications scheme is derived based on BPs, BP activities, DT’s paradigms, RTE processes, and RTE policies. • Identified and assessed the evaluation paradigms of the RTEs to measure the progress of the RTE architecture based on the DT service classifications. The starting point was the author’s experience with evolving aspects of DTs that are disrupting industries and consequently impacting the sustainability of the RTE. The initial publications emphasized innovative characteristics of DTs and lack of standardization, indicating the impact and adaptation of DTs are questionable for the RTEs. The publications are focused on developing different elements of RTE architecture. Each published work concerns the creation of an RTE architecture framework fit to the purpose of business operations in association with the DT services and associated capabilities. The RTE operational governance framework and incremental risk methodology presented in subsequent publications ensure the continuous evolution of RTE in advancements of DTs. Eventually, each publication presents the evaluation paradigms based on the identified scheme of DT service classification to measure the success of RTE architecture or corresponding elements of the RTE architecture

    Visually-defined Real-Time Orchestration of IoT Systems

    Get PDF
    In this work, we propose a method for extending Node-RED to allow the automatic decomposition and partitioning of the system towards higher decentralization. We provide a custom firmware for constrained devices to expose their resources, as well as new nodes and modifications in the Node-RED engine that allow automatic orchestration of tasks. The firmware is responsible for low-level management of health and capabilities, as well as executing MicroPython scripts on demand. Node-RED then takes advantage of this firmware by (1) providing a device registry allowing devices to announce themselves, (2) generating MicroPython code from dynamic analysis of flow and nodes, and (3) automatically (re-)assigning nodes to devices based on pre-specified properties and priorities. A mechanism to automatically detect abnormal run-time conditions and provide dynamic self-adaptation was also explored. Our solution was tested using synthetic home automation scenarios, where several experiments were conducted with both virtual and physical devices. We then exhaustively measured each scenario to allow further understanding of our proposal and how it impacts the system's resiliency, efficiency, and elasticity

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms
    • …
    corecore