16,010 research outputs found

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    Fine-Grained Reliability for V2V Communications around Suburban and Urban Intersections

    Full text link
    Safe transportation is a key use-case of the 5G/LTE Rel.15+ communications, where an end-to-end reliability of 0.99999 is expected for a vehicle-to-vehicle (V2V) transmission distance of 100-200 m. Since communications reliability is related to road-safety, it is crucial to verify the fulfillment of the performance, especially for accident-prone areas such as intersections. We derive closed-form expressions for the V2V transmission reliability near suburban corners and urban intersections over finite interference regions. The analysis is based on plausible street configurations, traffic scenarios, and empirically-supported channel propagation. We show the means by which the performance metric can serve as a preliminary design tool to meet a target reliability. We then apply meta distribution concepts to provide a careful dissection of V2V communications reliability. Contrary to existing work on infinite roads, when we consider finite road segments for practical deployment, fine-grained reliability per realization exhibits bimodal behavior. Either performance for a certain vehicular traffic scenario is very reliable or extremely unreliable, but nowhere in relatively proximity to the average performance. In other words, standard SINR-based average performance metrics are analytically accurate but can be insufficient from a practical viewpoint. Investigating other safety-critical point process networks at the meta distribution-level may reveal similar discrepancies.Comment: 27 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

    Full text link
    Millimeter wave (mmWave) vehicular communica tion systems have the potential to improve traffic efficiency and safety. Lack of secure communication links, however, may lead to a formidable set of abuses and attacks. To secure communication links, a physical layer precoding technique for mmWave vehicular communication systems is proposed in this paper. The proposed technique exploits the large dimensional antenna arrays available at mmWave systems to produce direction dependent transmission. This results in coherent transmission to the legitimate receiver and artificial noise that jams eavesdroppers with sensitive receivers. Theoretical and numerical results demonstrate the validity and effectiveness of the proposed technique and show that the proposed technique provides high secrecy throughput when compared to conventional array and switched array transmission techniques

    Quality of Assessment in Connected Vehicles

    Get PDF
    In recent years, there has been a huge interest in Machine-to-Machine connectivity under the umbrella of Internet of Things (IoT). With the UK Government looking to trial autonomous (driverless) cars this year, connected vehicles will play a key part in improving and managing existing road safety and congestion, leading to a new generation of intelligent transport systems. This is also well aligned to the current initiatives by the automotive industry to improve the driver’s experience on-board. However, the wireless channels most suitable for this application have not been standardized. In this paper, we review the wireless channels suitable for vehicle-2-vehicle (V2V) and Vehicle–to-x (V2x) connectivity. We further present preliminary analysis on the factors that impact the Quality of Service (QoS) of connected vehicles. We use the open access GEMV2 data to carry out Analysis of Variance (ANOVA) and Principal Component Analysis (PCA) on the link quality and found that both line of sight and non line of sight has a significant impact on the link quality. The work presented here will help in the development of connected vehicle network (CVN) prediction model and control for V2V and V2x connectivity. It will further contribute towards unfolding and testing key research questions in the context of connected vehicles which may otherwise be overlooked

    Quality of Assessment in Connected Vehicles

    Get PDF
    In recent years, there has been a huge interest in Machine-to-Machine connectivity under the umbrella of Internet of Things (IoT). With the UK Government looking to trial autonomous (driverless) cars this year, connected vehicles will play a key part in improving and managing existing road safety and congestion, leading to a new generation of intelligent transport systems. This is also well aligned to the current initiatives by the automotive industry to improve the driver’s experience on-board. However, the wireless channels most suitable for this application have not been standardized. In this paper, we review the wireless channels suitable for vehicle-2-vehicle (V2V) and Vehicle–to-x (V2x) connectivity. We further present preliminary analysis on the factors that impact the Quality of Service (QoS) of connected vehicles. We use the open access GEMV2 data to carry out Analysis of Variance (ANOVA) and Principal Component Analysis (PCA) on the link quality and found that both line of sight and non line of sight has a significant impact on the link quality. The work presented here will help in the development of connected vehicle network (CVN) prediction model and control for V2V and V2x connectivity. It will further contribute towards unfolding and testing key research questions in the context of connected vehicles which may otherwise be overlooked

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Distributed Adaptation Techniques for Connected Vehicles

    Get PDF
    In this PhD dissertation, we propose distributed adaptation mechanisms for connected vehicles to deal with the connectivity challenges. To understand the system behavior of the solutions for connected vehicles, we first need to characterize the operational environment. Therefore, we devised a large scale fading model for various link types, including point-to-point vehicular communications and multi-hop connected vehicles. We explored two small scale fading models to define the characteristics of multi-hop connected vehicles. Taking our research into multi-hop connected vehicles one step further, we propose selective information relaying to avoid message congestion due to redundant messages received by the relay vehicle. Results show that the proposed mechanism reduces messaging load by up to 75% without sacrificing environmental awareness. Once we define the channel characteristics, we propose a distributed congestion control algorithm to solve the messaging overhead on the channels as the next research interest of this dissertation. We propose a combined transmit power and message rate adaptation for connected vehicles. The proposed algorithm increases the environmental awareness and achieves the application requirements by considering highly dynamic network characteristics. Both power and rate adaptation mechanisms are performed jointly to avoid one result affecting the other negatively. Results prove that the proposed algorithm can increase awareness by 20% while keeping the channel load and interference at almost the same level as well as improve the average message rate by 18%. As the last step of this dissertation, distributed cooperative dynamic spectrum access technique is proposed to solve the channel overhead and the limited resources issues. The adaptive energy detection threshold, which is used to decide whether the channel is busy, is optimized in this work by using a computationally efficient numerical approach. Each vehicle evaluates the available channels by voting on the information received from one-hop neighbors. An interdisciplinary approach referred to as entropy-based weighting is used for defining the neighbor credibility. Once the vehicle accesses the channel, we propose a decision mechanism for channel switching that is inspired by the optimal flower selection process employed by bumblebees foraging. Experimental results show that by using the proposed distributed cooperative spectrum sensing mechanism, spectrum detection error converges to zero
    • …
    corecore