1,443 research outputs found

    Impatience in mobile networks and its application to data pricing

    Full text link
    We consider in this paper an import Quality of Experience (QoE) indicator in mobile networks that is reneging of users due to impatience. We specifically consider a cell under heavy load conditions and compute the reneging probability by using a fluid limit analysis. By solving the fixed point equation, we obtain a new QoE perturbation metric quantifying the impact of reneging on the performance of the system. This metric is then used to devise a new pricing scheme accounting of reneging. We specifically propose several flavors of this pricing around the idea of having a flat rate for accessing the network and an elastic price related to the level of QoE perturbation induced by communications

    Proactive seeding for information cascades in cellular networks

    Get PDF
    Abstract—Online social networks (OSNs) play an increasingly important role today in informing users about content. At the same time, mobile devices provide ubiquitous access to this content through the cellular infrastructure. In this paper, we exploit the fact that the interest in content spreads over OSNs, which makes it, to a certain extent, predictable. We propose Proactive Seeding– a technique for minimizing the peak load of cellular networks, by proactively pushing (“seeding”) content to selected users before they actually request it. We develop a family of algorithms that take as input information primarily about (i) cascades on the OSN and possibly about (ii) the background traffic load in the cellular network and (iii) the local connectivity among mobiles; the algorithms then select which nodes to seed and when. We prove that Proactive Seeding is optimal when the prediction of information cascades is perfect. In realistic simulations, driven by traces from Twitter and cellular networks, we find that Proactive Seeding reduces the peak cellular load by 20%-50%. Finally, we combine Proactive Seeding with techniques that exploit local mobile-to-mobile connections to further reduce the peak load. I

    Flow Level QoE of Video Streaming in Wireless Networks

    Full text link
    The Quality of Experience (QoE) of streaming service is often degraded by frequent playback interruptions. To mitigate the interruptions, the media player prefetches streaming contents before starting playback, at a cost of delay. We study the QoE of streaming from the perspective of flow dynamics. First, a framework is developed for QoE when streaming users join the network randomly and leave after downloading completion. We compute the distribution of prefetching delay using partial differential equations (PDEs), and the probability generating function of playout buffer starvations using ordinary differential equations (ODEs) for CBR streaming. Second, we extend our framework to characterize the throughput variation caused by opportunistic scheduling at the base station, and the playback variation of VBR streaming. Our study reveals that the flow dynamics is the fundamental reason of playback starvation. The QoE of streaming service is dominated by the first moments such as the average throughput of opportunistic scheduling and the mean playback rate. While the variances of throughput and playback rate have very limited impact on starvation behavior.Comment: 14 page

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten

    Performance Analysis of Data Traffic in Small Cells Networks with User Mobility

    Get PDF
    We analyze the impact of inter-cell mobility on data traffic performance in dense networks with small cells. To this end, a multi-class queuing system with impatience is proposed as a generic model that captures mobility through the sojourn time of users in the cell. We provide mathematical proofs for the stability and the regularity of this multi-class queuing system. We then show how the performance of a homogeneous network is amenable to the application of the generic model to a single representative cell. This model is applied to derive the throughput of both mobile and static users, along with the handover probability. Numerical evaluation and simulation results are provided to assess the accuracy of the approach; we show, in particular, that both classes of users benefit from a throughput gain induced by the opportunistic displacement of mobile users among cells

    Forever Young: Aging Control For Smartphones In Hybrid Networks

    Get PDF
    The demand for Internet services that require frequent updates through small messages, such as microblogging, has tremendously grown in the past few years. Although the use of such applications by domestic users is usually free, their access from mobile devices is subject to fees and consumes energy from limited batteries. If a user activates his mobile device and is in range of a service provider, a content update is received at the expense of monetary and energy costs. Thus, users face a tradeoff between such costs and their messages aging. The goal of this paper is to show how to cope with such a tradeoff, by devising \emph{aging control policies}. An aging control policy consists of deciding, based on the current utility of the last message received, whether to activate the mobile device, and if so, which technology to use (WiFi or 3G). We present a model that yields the optimal aging control policy. Our model is based on a Markov Decision Process in which states correspond to message ages. Using our model, we show the existence of an optimal strategy in the class of threshold strategies, wherein users activate their mobile devices if the age of their messages surpasses a given threshold and remain inactive otherwise. We then consider strategic content providers (publishers) that offer \emph{bonus packages} to users, so as to incent them to download updates of advertisement campaigns. We provide simple algorithms for publishers to determine optimal bonus levels, leveraging the fact that users adopt their optimal aging control strategies. The accuracy of our model is validated against traces from the UMass DieselNet bus network.Comment: See also http://www-net.cs.umass.edu/~sadoc/agecontrol
    • 

    corecore