1,580 research outputs found

    ACCAMS: Additive Co-Clustering to Approximate Matrices Succinctly

    Full text link
    Matrix completion and approximation are popular tools to capture a user's preferences for recommendation and to approximate missing data. Instead of using low-rank factorization we take a drastically different approach, based on the simple insight that an additive model of co-clusterings allows one to approximate matrices efficiently. This allows us to build a concise model that, per bit of model learned, significantly beats all factorization approaches to matrix approximation. Even more surprisingly, we find that summing over small co-clusterings is more effective in modeling matrices than classic co-clustering, which uses just one large partitioning of the matrix. Following Occam's razor principle suggests that the simple structure induced by our model better captures the latent preferences and decision making processes present in the real world than classic co-clustering or matrix factorization. We provide an iterative minimization algorithm, a collapsed Gibbs sampler, theoretical guarantees for matrix approximation, and excellent empirical evidence for the efficacy of our approach. We achieve state-of-the-art results on the Netflix problem with a fraction of the model complexity.Comment: 22 pages, under review for conference publicatio

    On content-based recommendation and user privacy in social-tagging systems

    Get PDF
    Recommendation systems and content filtering approaches based on annotations and ratings, essentially rely on users expressing their preferences and interests through their actions, in order to provide personalised content. This activity, in which users engage collectively has been named social tagging, and it is one of the most popular in which users engage online, and although it has opened new possibilities for application interoperability on the semantic web, it is also posing new privacy threats. It, in fact, consists of describing online or offline resources by using free-text labels (i.e. tags), therefore exposing the user profile and activity to privacy attacks. Users, as a result, may wish to adopt a privacy-enhancing strategy in order not to reveal their interests completely. Tag forgery is a privacy enhancing technology consisting of generating tags for categories or resources that do not reflect the user's actual preferences. By modifying their profile, tag forgery may have a negative impact on the quality of the recommendation system, thus protecting user privacy to a certain extent but at the expenses of utility loss. The impact of tag forgery on content-based recommendation is, therefore, investigated in a real-world application scenario where different forgery strategies are evaluated, and the consequent loss in utility is measured and compared.Peer ReviewedPostprint (author’s final draft

    Comparing Context-Aware Recommender Systems in Terms of Accuracy and Diversity: Which Contextual Modeling, Pre-filtering and Post-Filtering Methods Perform the Best

    Get PDF
    Although the area of Context-Aware Recommender Systems (CARS) has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable “best bet” when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.Politecnico di Bari, Italy; NYU Stern School of Busines
    • …
    corecore