155,692 research outputs found

    Uncertainty Updating in the Description of Coupled Heat and Moisture Transport in Heterogeneous Materials

    Full text link
    To assess the durability of structures, heat and moisture transport need to be analyzed. To provide a reliable estimation of heat and moisture distribution in a certain structure, one needs to include all available information about the loading conditions and material parameters. Moreover, the information should be accompanied by a corresponding evaluation of its credibility. Here, the Bayesian inference is applied to combine different sources of information, so as to provide a more accurate estimation of heat and moisture fields [1]. The procedure is demonstrated on the probabilistic description of heterogeneous material where the uncertainties consist of a particular value of individual material characteristic and spatial fluctuations. As for the heat and moisture transfer, it is modelled in coupled setting [2]

    Diseño para operabilidad: Una revisión de enfoques y estrategias de solución

    Get PDF
    In the last decades the chemical engineering scientific research community has largely addressed the design-foroperability problem. Such an interest responds to the fact that the operability quality of a process is determined by design, becoming evident the convenience of considering operability issues in early design stages rather than later when the impact of modifications is less effective and more expensive. The necessity of integrating design and operability is dictated by the increasing complexity of the processes as result of progressively stringent economic, quality, safety and environmental constraints. Although the design-for-operability problem concerns to practically every technical discipline, it has achieved a particular identity within the chemical engineering field due to the economic magnitude of the involved processes. The work on design and analysis for operability in chemical engineering is really vast and a complete review in terms of papers is beyond the scope of this contribution. Instead, two major approaches will be addressed and those papers that in our belief had the most significance to the development of the field will be described in some detail.En las Ășltimas dĂ©cadas, la comunidad cientĂ­fica de ingenierĂ­a quĂ­mica ha abordado intensamente el problema de diseño-para-operabilidad. Tal interĂ©s responde al hecho de que la calidad operativa de un proceso esta determinada por diseño, resultando evidente la conveniencia de considerar aspectos operativos en las etapas tempranas del diseño y no luego, cuando el impacto de las modificaciones es menos efectivo y mĂĄs costoso. La necesidad de integrar diseño y operabilidad esta dictada por la creciente complejidad de los procesos como resultado de las cada vez mayores restricciones econĂłmicas, de calidad de seguridad y medioambientales. Aunque el problema de diseño para operabilidad concierne a prĂĄcticamente toda disciplina, ha adquirido una identidad particular dentro de la ingenierĂ­a quĂ­mica debido a la magnitud econĂłmica de los procesos involucrados. El trabajo sobre diseño y anĂĄlisis para operabilidad es realmente vasto y una revisiĂłn completa en tĂ©rminos de artĂ­culos supera los alcances de este trabajo. En su lugar, se discutirĂĄn los dos enfoques principales y aquellos artĂ­culos que en nuestra opiniĂłn han tenido mayor impacto para el desarrollo de la disciplina serĂĄn descriptos con cierto detalle.Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentin

    Robustness and performance trade-offs in control design for flexible structures

    Get PDF
    Linear control design models for flexible structures are only an approximation to the “real” structural system. There are always modeling errors or uncertainty present. Descriptions of these uncertainties determine the trade-off between achievable performance and robustness of the control design. In this paper it is shown that a controller synthesized for a plant model which is not described accurately by the nominal and uncertainty models may be unstable or exhibit poor performance when implemented on the actual system. In contrast, accurate structured uncertainty descriptions lead to controllers which achieve high performance when implemented on the experimental facility. It is also shown that similar performance, theoretically and experimentally, is obtained for a surprisingly wide range of uncertain levels in the design model. This suggests that while it is important to have reasonable structured uncertainty models, it may not always be necessary to pin down precise levels (i.e., weights) of uncertainty. Experimental results are presented which substantiate these conclusions

    The HIRM+ Flight Dynamics Model

    Get PDF
    The major objective of the GARTEUR Action Group on Analysis Techniques for Clearance of Flight Control Laws FM(AG-11) is the improvement of the flight clearance process by increased automation of the tools used for modelbased analysis of the aircraft’s dynamical behaviour. What is finally needed are techniques for faster detection of the worst case combination of parameter values and manoeuvre cases, from which the flight clearance restrictions are be derived. The basis for such an analysis are accurate mathematical models of the controlled aircraft. In this chapter the HIRM+ flight dynamics model is described as one of the benchmark military aircraft models used within FM(AG-11). HIRM+ originates from the HIRM (High Incidence Research Model) developed within the GARTEUR Action Group on Robust Flight Control M(AG-08). In building the HIRM+, additional emphasis has been put on realistic modelling of parametric uncertainties
    • 

    corecore