5 research outputs found

    Hybrid model for the design of a deep-lane multisatellite AVS/RS

    Get PDF
    The autonomous vehicle storage and retrieval system (AVS/RS) significantly improves the responsiveness and throughput of the traditional automated storage and retrieval system (AS/RS) in regard to handling unit loads. The AVS/RS consists of multiple tiers connected to an elevator system and is equipped with at least two autonomous vehicles, that is, a shuttle and satellite. Other necessary equipment are the lifts and input/output buffer areas. This paper aims to present and apply an original hybrid analytical-simulative model for the design of a deep-lane and multisatellite AVS-RS by evaluating and controlling the system performance. This AVS-RS is equipped with multiple free and non-free satellites for each tier. As an original contribution, this study reviews the literature on AVS/RS according to the introduction of multiple features categorized into five homogeneous groups: (1) rack configuration, (2) vehicle kinematics and configuration, (3) dispatching rules, (4) modeling approach, and (5) validation. Two of the most critical issues in existing research studies are the random arrival time of storage and retrieval transactions and the random storage policy. The proposed modeling approach is data-driven and based on realistic assumptions, filling the gap between the literature and real applications. This hybrid model is applied to a case study of the beverage industry according to a what-if comparative and competitive multiscenario analysis. This data-driven assessment supports the decision-making process on the number of satellites for each tier, while simultaneously controlling the service and waiting times, system throughput, and vehicle utilization. The analysis based on the maximum system throughput estimation demonstrates that introducing more than two satellites does not increase the productivity of the system

    Integrated Models and Tools for Design and Management of Global Supply Chain

    Get PDF
    In modern and global supply chain, the increasing trend toward product variety, level of service, short delivery delay and response time to consumers, highlight the importance to set and configure smooth and efficient logistic processes and operations. In order to comply such purposes the supply chain management (SCM) theory entails a wide set of models, algorithms, procedure, tools and best practices for the design, the management and control of articulated supply chain networks and logistics nodes. The purpose of this Ph.D. dissertation is going in detail on the principle aspects and concerns of supply chain network and warehousing systems, by proposing and illustrating useful methods, procedures and support-decision tools for the design and management of real instance applications, such those currently face by enterprises. In particular, after a comprehensive literature review of the principal warehousing issues and entities, the manuscript focuses on design top-down procedure for both less-than-unit-load OPS and unit-load storage systems. For both, decision-support software platforms are illustrated as useful tools to address the optimization of the warehousing performances and efficiency metrics. The development of such interfaces enables to test the effectiveness of the proposed hierarchical top-down procedure with huge real case studies, taken by industry applications. Whether the large part of the manuscript deals with micro concerns of warehousing nodes, also macro issues and aspects related to the planning, design, and management of the whole supply chain are enquired and discussed. The integration of macro criticalities, such as the design of the supply chain infrastructure and the placement of the logistic nodes, with micro concerns, such the design of warehousing nodes and the management of material handling, is addressed through the definition of integrated models and procedures, involving the overall supply chain and the whole product life cycle. A new integrated perspective should be applied in study and planning of global supply chains. Each aspect of the reality influences the others. Each product consumed by a customer tells a story, made by activities, transformations, handling, processes, traveling around the world. Each step of this story accounts costs, time, resources exploitation, labor, waste, pollution. The economical and environmental sustainability of the modern global supply chain is the challenge to face

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Operational Control of Internal Transport

    Get PDF
    Operational Control of Internal Transport considers the control of guided vehicles in vehicle-based internal transport systems found in facilities such as warehouses, production plants, distribution centers and transshipment terminals. The author's interest of research having direct use for practice has resulted in a combination of theoretical and practical research in vehicle-based internal transport systems. An overview is given of the related literature and results are presented that show how different vehicle dispatching rules behave in different environments
    corecore