128,815 research outputs found

    Reo + mCRL2: A Framework for Model-Checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the mCRL2 toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of mCRL2, address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with mCRL2 for the analysis of dataflow in service-based process models

    Reo + mCRL2: A Framework for Model-checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of , address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with for the analysis of dataflow in service-based process models

    SOA-Driven Business-Software Alignment

    Get PDF
    The alignment of business processes and their supporting application software is a major concern during the initial software design phases. This paper proposes a design approach addressing this problem of business-software alignment. The approach takes an initial business model as a basis in deriving refined models that target a service-oriented software implementation. The approach explicitly identifies a software modeling level at which software modules are represented as services in a technology-platformindependent way. This model-driven service-oriented approach has the following properties: (i) there is a forced alignment (consistency) between business processes and supporting applications; (ii) changes in the business environment can be traced to the application and vice versa, via model relationships; (iii) the software modules modeled as services have a high degree of autonomy; (iv) migration to new technology platforms can be supported through the platform independent software model

    Towards a Formal Framework for Mobile, Service-Oriented Sensor-Actuator Networks

    Full text link
    Service-oriented sensor-actuator networks (SOSANETs) are deployed in health-critical applications like patient monitoring and have to fulfill strong safety requirements. However, a framework for the rigorous formal modeling and analysis of SOSANETs does not exist. In particular, there is currently no support for the verification of correct network behavior after node failure or loss/addition of communication links. To overcome this problem, we propose a formal framework for SOSANETs. The main idea is to base our framework on the \pi-calculus, a formally defined, compositional and well-established formalism. We choose KLAIM, an existing formal language based on the \pi-calculus as the foundation for our framework. With that, we are able to formally model SOSANETs with possible topology changes and network failures. This provides the basis for our future work on prediction, analysis and verification of the network behavior of these systems. Furthermore, we illustrate the real-life applicability of this approach by modeling and extending a use case scenario from the medical domain.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    Multi-perspective requirements engineering for networked business systems: a framework for pattern composition

    Get PDF
    How business and software analysts explore, document, and negotiate requirements for enterprise systems is critical to the benefits their organizations will eventually derive. In this paper, we present a framework for analysis and redesign of networked business systems. It is based on libraries of patterns which are derived from existing Internet businesses. The framework includes three perspectives: Economic value, Business processes, and Application communication, each of which applies a goal-oriented method to compose patterns. By means of consistency relationships between perspectives, we demonstrate the usefulness of the patterns as a light-weight approach to exploration of business ideas

    Designing community care systems with AUML

    Get PDF
    This paper describes an approach to developing an appropriate agent environment appropriate for use in community care applications. Key to its success is that software designers collaborate with environment builders to provide the levels of cooperation and support required within an integrated agent–oriented community system. Agent-oriented Unified Modeling Language (AUML) is a practical approach to the analysis, design, implementation and management of such an agent-based system, whilst providing the power and expressiveness necessary to support the specification, design and organization of a health care service. The background of an agent-based community care application to support the elderly is described. Our approach to building agent–oriented software development solutions emphasizes the importance of AUML as a fundamental initial step in producing more general agent–based architectures. This approach aims to present an effective methodology for an agent software development process using a service oriented approach, by addressing the agent decomposition, abstraction, and organization characteristics, whilst reducing its complexity by exploiting AUML’s productivity potential. </p
    • …
    corecore