14,242 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ∌1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    A new weighted NMF algorithm for missing data interpolation and its application to speech enhancement

    Get PDF
    In this paper we present a novel weighted NMF (WNMF) algorithm for interpolating missing data. The proposed approach has a computational cost equivalent to that of standard NMF and, additionally, has the flexibility to control the degree of interpolation in the missing data regions. Existing WNMF methods do not offer this capability and, thereby, tend to overestimate the values in the masked regions. By constraining the estimates of the missing-data regions, the proposed approach allows for a better trade-off in the interpolation. We further demonstrate the applicability of WNMF and missing data estimation to the problem of speech enhancement. In this preliminary work, we consider the improvement obtainable by applying the proposed method to ideal binary mask-based gain functions. The instrumental quality metrics (PESQ and SNR) clearly indicate the added benefit of the missing data interpolation, compared to the output of the ideal binary mask. This preliminary work opens up novel possibilities not only in the field of speech enhancement but also, more generally, in the field of missing data interpolation using NMF

    Direction finding for an extended target with possibly non-symmetric spatial spectrum

    Get PDF
    We consider the problem of estimating the direction of arrival (DOA) of an extended target in radar array processing. Two algorithms are proposed that do not assume that the power azimuthal distribution of the scatterers is symmetric with respect to the mass center of the target. The first one is based on spectral moments which are easily related to the target’s DOA. The second method stems from a previous paper by the present authors and consists of a least-squares fit on the elements of the covariance matrix. Both methods are simple and are shown to provide accurate estimates. Furthermore, they extend the range of unambiguous DOAs that can be estimated, compared with the same previous paper

    Multilinear tensor regression for longitudinal relational data

    Full text link
    A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.Comment: Published at http://dx.doi.org/10.1214/15-AOAS839 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Invariant Causal Prediction for Nonlinear Models

    Full text link
    An important problem in many domains is to predict how a system will respond to interventions. This task is inherently linked to estimating the system's underlying causal structure. To this end, Invariant Causal Prediction (ICP) (Peters et al., 2016) has been proposed which learns a causal model exploiting the invariance of causal relations using data from different environments. When considering linear models, the implementation of ICP is relatively straightforward. However, the nonlinear case is more challenging due to the difficulty of performing nonparametric tests for conditional independence. In this work, we present and evaluate an array of methods for nonlinear and nonparametric versions of ICP for learning the causal parents of given target variables. We find that an approach which first fits a nonlinear model with data pooled over all environments and then tests for differences between the residual distributions across environments is quite robust across a large variety of simulation settings. We call this procedure "invariant residual distribution test". In general, we observe that the performance of all approaches is critically dependent on the true (unknown) causal structure and it becomes challenging to achieve high power if the parental set includes more than two variables. As a real-world example, we consider fertility rate modelling which is central to world population projections. We explore predicting the effect of hypothetical interventions using the accepted models from nonlinear ICP. The results reaffirm the previously observed central causal role of child mortality rates
    • 

    corecore